Skip to main content

Advertisement

Log in

Antibacterial and in vivo reactivity of bioactive glass and poly(vinyl alcohol) composites prepared by melting and sol-gel techniques

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Bioactive glass particle is used in the repair of bone defects. This material undergoes a series of surface in vivo reactions, which leads to osteointegration. We evaluated the effect of the bioactive glass synthesis, sol-gel (BG(S)) versus melting (BG(M)), associated with polyvinyl-alcohol (PVA) on in vivo bioactivity with biochemical parameters, liver-kidney histological structure and antibacterial in vitro activity. These composites were testified in many bacteria and implanted in ovariectomized rat. The serum and organs (liver and kidney) of all groups, control and treated rats, were collected to investigate the side effects of our composites, BG(S)-PVA and BG(M)-PVA, in comparison with control and ovariectomized rats. Also, the implants, before and after implantation, were prepared for analysis using physicochemical techniques such as Fourier transform infrared spectroscopy and X-ray diffraction. Our results have shown the stability of natremia, kaliemia, calcemia and phosphoremia. The histological structures of liver and kidney in implanted rats are intact compared to control and ovariectomized rats. BG(S)-PVA is characterized by a higher antibacterial effect on negative and positive gram bacteria than BG(M)-PVA. The physicochemical results have confirmed a progressive degradation of BG(S)-PVA and BG(M)-PVA, while replacing the implant by an apatite layer. But this bioactivity of BG(S)-PVA is faster than BG(M)-PVA. We can therefore confirm, on the one hand, the biocompatibility of our two implants and, on the other hand, the beneficial effect of sol-gel synthesis technique versus melting, both on the antibacterial effect and on the rapid formation of layer hydroxyapatite, and consequently on osteogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mabrouk, A. Mostafa, H. Oudadesse, E. Wers, A. Lucas-Girot and M. I. El-Gohary, Bioceram. Dev. Appl., 4, 1000072 (2014).

    Google Scholar 

  2. F.-Z. Mezahi, A. Lucas-Girot, H. Oudadesse and A. Harabi, J. Non-Cryst. Solids, 361, 111 (2013).

    Article  CAS  Google Scholar 

  3. M. Mabrouk, A. A. Mostafa, H. Oudadesse, A. A. Mahmoud and M. I. El-Gohary, Ceram. Int., 40, 4833 (2014).

    Article  CAS  Google Scholar 

  4. F. E. Wiria, C. K. Chua, K. F. Leong, Z. Y. Quah, M. Chandrasekaran and M. W. Lee, J. Mater. Sci. Mater. Med., 19, 989 (2008).

    Article  CAS  Google Scholar 

  5. Y. Pan and D. Xiong, Wear, 266, 699 (2009).

    Article  CAS  Google Scholar 

  6. M. Wang, Y. Li, J. Wu, F. Xu, Y. Zuo and J. A. Jansen, J. Biomed. Mater. Res. A, 85, 418 (2008).

    Article  Google Scholar 

  7. V. Mortazavi, M. M. Nahrkhalaji, M. H. Fathi, S. B. Mousavi and B. N. Esfahani, J. Biomed. Mater. Res. A, 94, 160 (2010).

    Article  CAS  Google Scholar 

  8. M. Mozafari and F. Moztarzadeh, Int. Ceram. Rev., 62, 423 (2014).

    Google Scholar 

  9. M. Gholipourmalekabadi, M. Sameni, A. Hashemi, F. Zamani, A. Rostami and M. Mozafari, Silver-and fluoride-containing mesoporous bioactive glasses versus commonly used antibiotics: Activity against multidrug-resistant bacterial strains isolated from patients with burns. Burns (2015).

    Google Scholar 

  10. M. Mozafari, Bioceram. Dev. Appl., 4, e106 (2014).

    Google Scholar 

  11. F. Baghbani, F. Moztarzadeh, L. Hajibaki and M. Mozafari, Bull. Mater. Sci., 36, 1339 (2014).

    Article  Google Scholar 

  12. A. Rostami, M. Mozafari, M. Gholipourmalekabadi, H. H. Caicedo, Z. Lasjerdi, M. Sameni and A. Samadikuchaksaraei, Acta Trop., 148, 105 (2015).

    Article  CAS  Google Scholar 

  13. E. Dietrich, H. Oudadesse, A. Lucas-Girot and M. Mami, J. Biomed. Mater. Res. A, 88, 1087 (2009).

    Article  Google Scholar 

  14. M. Mabrouk, A. A. Mostapaha, H. Oudadesse, A. A. Mahmoud, A. M. Gaafar and M. I. El-Gohary, Bioceram. Dev. Appl., S, 1 (2013).

    Google Scholar 

  15. C. Gao, Q. Gao, Y. Li, M. N. Rahaman, A. Teramoto and K. Abe, J. Biomed. Mater. Res. A, 100, 1324 (2012).

    Article  Google Scholar 

  16. A. Yazdanpanah, R. Kamalian, F. Moztarzadeh, M. Mozafari, R. Ravarian and L. Tayebi, Ceram. Int., 38, 5007 (2012).

    Article  CAS  Google Scholar 

  17. S. C. Wong, A. Baji and A. N. Gent, Compos. Part Appl. Sci. Manuf., 39, 579 (2008).

    Article  Google Scholar 

  18. J. R. Jones, J. Eur. Ceram. Soc., 29, 1275 (2009).

    Article  CAS  Google Scholar 

  19. R. K. Nalla, J. H. Kinney and R. O. Ritchie, Biomaterials, 24, 3955 (2003).

    Article  CAS  Google Scholar 

  20. P. Sepulveda, J. R. Jones and L. L. Hench, J. Biomed. Mater. Res., 58, 734 (2001).

    Article  CAS  Google Scholar 

  21. T. Peltola, M. Jokinen, H. Rahiala, E. Levänen, J. B. Rosenholm, I. Kangasniemi and A. Yli-Urpo, J. Biomed. Mater. Res., 44, 12 (1999).

    Article  CAS  Google Scholar 

  22. M. M. Pereira and L. L. Hench, J. Sol-Gel Sci. Technol., 7, 59 (1996).

    Article  CAS  Google Scholar 

  23. R. Li, A. E. Clark and L. L. Hench, J. Appl. Biomater., 2, 231 (1991).

    Article  CAS  Google Scholar 

  24. H. Boyar, B. Turan and F. Severcan, J. Spectrosc., 17, 627 (2003).

    Article  CAS  Google Scholar 

  25. S. Jebahi, H. Oudadesse, B. Xv, H. Keskes, T. Rebai, A. El Feki and H. El Feki, Afr. J. Pharm. Pharmacol., 6, 1276 (2012).

    CAS  Google Scholar 

  26. J. R. Jones, Acta Biomater., 9, 4457 (2013).

    Article  CAS  Google Scholar 

  27. S.-H. Shin and H.-I. Kim, J. Ind. Eng. Chem., 7, 147 (2001).

    CAS  Google Scholar 

  28. D. Farlay, G. Panczer, C. Rey, P. D. Delmas and G. Boivin, J. Bone. Miner. Metab., 28, 433 (2010).

    Article  Google Scholar 

  29. V. Krishnan and T. Lakshmi, J. Adv. Pharm. Technol. Res., 4, 78 (2013).

    Article  CAS  Google Scholar 

  30. Y. Ibn Yacoub, B. Amine, A. Laatiris, F. Wafki, F. Znat and N. Hajjaj-Hassouni, Rheumatol. Int., 32, 3143 (2012).

    Article  Google Scholar 

  31. O. Bretcanu, S. Misra, I. Roy, C. Renghini, F. Fiori, A. R. Boccaccini and V. Salih, J. Tissue. Eng. Regen. Med., 3, 139 (2009).

    Article  CAS  Google Scholar 

  32. H. G. Kim and J. H., Fibers Polym., 12, 602 (2011).

  33. H. Liao, R. Qi, M. Shen, X. Cao, R. Guo, Y. Zhang and X. Shi, Colloids Surf., B Biointerfaces, 84, 528 (2011).

    Article  CAS  Google Scholar 

  34. M. M. Echezarreta-López and M. Landin, Int. J. Pharm., 453, 641 (2013).

    Article  Google Scholar 

  35. I. Allan, H. Newman and M. Wilson, Biomaterials, 22, 1683 (2001).

    Article  CAS  Google Scholar 

  36. D. Zhang, O. Leppäranta, E. Munukka, H. Ylänen, M. K. Viljanen, E. Eerola, M. Hupa and L. Hupa, J. Biomed. Mater. Res. A, 93, 475 (2010).

    Google Scholar 

  37. H. Nikaido, J. Bioenerg. Biomembr., 25, 581 (1993).

    CAS  Google Scholar 

  38. H. Nikaido, Microbiol. Mol. Biol. Rev. MMBR, 67, 593 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafed Elfeki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulila, S., Oudadesse, H., Elfeki, H. et al. Antibacterial and in vivo reactivity of bioactive glass and poly(vinyl alcohol) composites prepared by melting and sol-gel techniques. Korean J. Chem. Eng. 33, 1659–1668 (2016). https://doi.org/10.1007/s11814-015-0298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0298-1

Keywords

Navigation