Skip to main content

Advertisement

Log in

A pore-scale model for microfibrous ammonia cracking microreactors via lattice Boltzmann method

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Microfibrous microreactors with high reactive surface-to-volume ratio are good choices for ammonia cracking, which is one of the main strategies for CO-free hydrogen production. In the current study, a numerical model based on the lattice Boltzmann method (LBM) is presented to investigate ammonia cracking microreactors with coupled physiochemical thermal processes at the pore scale. Several sets of transport phenomena such as fluid flow, species transport, heat transfer and chemical reaction are taken into account. Moreover, to model the species transport in the ammonia cracking microreactor an active approach is applied for the first time. The model is validated and then employed to simulate the reactive transport in five different microreactors with dissimilar structural parameters. Comparison of the results shows that the fibers orientation is an effective geometric parameter that can greatly influence the hydrogen production efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, Modern electric, hybrid electric and fuel cell vehicels, CRC Press, London (2012).

    Google Scholar 

  2. J. Larminie and A. Dicks, Fuel cell systems explained, Wiley, Chichester (2003).

    Book  Google Scholar 

  3. M. Wang, J. Li, L. Chen and Y. Lu, Int. J. Hydrogen Energy, 34, 1710 (2009).

    Article  CAS  Google Scholar 

  4. O. Worz, K. P. Jackel, T. Richter and A. Wolf, Chem. Eng. Technol., 24, 138 (2001).

    Article  CAS  Google Scholar 

  5. K. F. Jensen, Chem. Eng. Sci., 56, 293 (2001).

    Article  CAS  Google Scholar 

  6. G. Kolb and V. Hessel, Chem. Eng. J., 98, 1 (2004).

    Article  CAS  Google Scholar 

  7. M. Karakaya, S. Keskin and A. K. Avci, Appl. Catal. A, 411, 114 (2012).

    Article  Google Scholar 

  8. J. J. Lerou, M. P. Harold, J. Ryley, J. Ashmead, T. C. O’Brien, M. Johnson, J. Perrotto, C. T. Blaisddell, T. A. Rensi and J. Nyquist, in Microsystem technology for chemical and biological microreactors, W. Ehrfield Eds., DECHEMA, New York (1996).

  9. S. Chiuta, R. C. Everson, H. W. J. P. Neomagus, P. Van der Gryp and D. G. Bessarabov, Int. J. Hydrogen Energy, 38, 14968 (2013).

    Article  CAS  Google Scholar 

  10. M. S. Shin, N. Park, M. J. Park, K. W. Jun and K. S. Ha, Chem. Eng. J., 234, 23 (2013).

    Article  CAS  Google Scholar 

  11. M. S. Shin, N. Park, M. J. Park, J. Y. Cheon, J. K. Kanga, K. W. Jun and K. S. Ha, Fuel Process. Technol., 118, 235 (2014).

    Article  CAS  Google Scholar 

  12. D. Y. Shin, K. S. Ha, M. J. Park, G. Kwak, Y. J. Lee and K. W. Jun, Fuel, 158, 826 (2015).

    Article  CAS  Google Scholar 

  13. S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech., 30, 329 (1998).

    Article  Google Scholar 

  14. T. Zeiser, P. Lammers, E. Klemm, Y. W. Li, J. Bernsdorf and G. Brenner, Chem. Eng. Sci., 56, 1697 (2001).

    Article  CAS  Google Scholar 

  15. H. Freund, T. Zeiser, F. Huber, E. Klemm, G. Brenner, F. Durst and G. Emig, Chem. Eng. Sci., 58, 903 (2003).

    Article  CAS  Google Scholar 

  16. M. Nijemeisland and A. G. Dixon, AIChE J., 50, 906 (2004).

    Article  CAS  Google Scholar 

  17. S. P. Sullivan, F. M. Sani, M. L. Johns and L. F. Gladden, Chem. Eng. Sci., 60, 3405 (2005).

    Article  CAS  Google Scholar 

  18. N. Manjhi, N. Verma, K. Salem and D. Mewes, Chem. Eng. Sci., 61, 2510 (2006).

    Article  CAS  Google Scholar 

  19. P. H. Kao, T. F. Ren and R. J. Yang, Int. J. Heat Mass Transfer, 50, 4243 (2007).

    Article  CAS  Google Scholar 

  20. N. Verma, K. Salem and D. Mewes, Chem. Eng. Sci., 62, 3685 (2007).

    Article  CAS  Google Scholar 

  21. L. Chen, Q. Kang, Y. L. He and W. Q. Tao, Int. J. Hydrogen Energy, 37, 13943 (2012).

    Article  CAS  Google Scholar 

  22. M. C. Sukop and D. T. Thorne, Lattice Boltzmann Modeling, An Introduction for Geoscientists and Engineers, Springer, Heidelberg (2007).

    Google Scholar 

  23. A. Satoh, Introduction to practice of molecular simulation, Elsevier Inc., Amsterdam (2011).

    Google Scholar 

  24. P. L. Bhatnagar, E. P. Gross and M. Krook, Phys. Rev., 94, 511 (1954).

    Article  CAS  Google Scholar 

  25. A. A. Mohamad, Lattice Boltzmann Method-Fundamentals and Engineering Applications with Computer Codes, Springer, Heidelberg (2011).

    Google Scholar 

  26. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond Numerical Mathematics And Scientific Computation, Clarendon Press, Oxford (2001).

    Google Scholar 

  27. A. K. Gunstensen, D. H. Rothman, S. Zaleski and G. Zanetti, Phys. Rev. A, 43, 4320 (1991).

    Article  CAS  Google Scholar 

  28. X. Shan and H. Chen, Phys. Rev. E, 47, 1815 (1993).

    Article  Google Scholar 

  29. M. R. Swift, W. R. Osborn and J. M. Yeomans, Phys. Rev. Lett., 75, 830 (1995).

    Article  CAS  Google Scholar 

  30. A. S. Chellappa, C. M. Fischer and W. J. Thomson, Appl. Catal. A, 227, 231 (2002).

    Article  CAS  Google Scholar 

  31. M. R. Kamali, S. Sundaresan, H. E. A. Van den Akker and J. J. J. Gillissen, Chem. Eng. J., 207–208, 587 (2012).

    Article  Google Scholar 

  32. G. R. Molaeimanesh and M. H. Akbari, J. Power Sources, 258, 89 (2014).

    Article  CAS  Google Scholar 

  33. G. R. Molaeimanesh and M. H. Akbari, Korean J. Chem. Eng., 32, 397 (2015).

    Article  CAS  Google Scholar 

  34. Y. Liu, H. Wang, J. Li, Y. Lu, H. Wu, Q. Xue and L. Chen, Appl. Catal. A, 328, 77 (2007).

    Article  CAS  Google Scholar 

  35. Q. Zou and X. He, Phys. Fluids, 9, 1591 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Reza Molaeimanesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molaeimanesh, G.R., Sanati Davarani, M.H. A pore-scale model for microfibrous ammonia cracking microreactors via lattice Boltzmann method. Korean J. Chem. Eng. 33, 1211–1219 (2016). https://doi.org/10.1007/s11814-015-0263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0263-z

Keywords

Navigation