Skip to main content
Log in

Process modeling and optimization of Rhodamine B dye ozonation in a novel microreactor equipped with high frequency ultrasound wave

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This paper reports the effect of 1.7 MHz ultrasound wave on decolorization efficiency of Rhodamine B (RB) solution by ozone in a T-type microreactor. Response surface methodology using central composite design (CCD) was used for analysis and optimization of the reaction conditions. The effective parameters such as solution pH, dye initial concentration, liquid volumetric flow rate, ozone dosage and the length of microreactor on decolorization process were investigated. Rhodamine B removal from solution was determined in presence of and without sonication. The results indicate that for both modes, the decolorization efficiency of RB increased with increase of the ozone dosage as well as the length of employed microreactor. However, with increase of RB initial concentration and liquid flow rate, the decolorization efficiency was decreased. The comparison between the reactors with and without sonication shows that the application of ultrasound wave is effective more than 15% on removal efficiency of RB at various conditions. At optimum conditions, the experimental RB removal yield of 97. 3% and 95. 8 was obtained for with and without irradiation layouts, respectively. The statistical analyses and the agreement of the experimental results with model predictions showed the reliability of the regression model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Jin, Y. Wu, J. Cao and Y. Wu, Korean J. Chem. Eng., 45, 589 (2014).

    CAS  Google Scholar 

  2. S. Sahinkaya, J. Ind. Eng. Chem., 19, 601 (2013).

    Article  CAS  Google Scholar 

  3. Y. Na, S. Song and Y. Park, Korean J. Chem. Eng., 22, 196 (2005).

    Article  CAS  Google Scholar 

  4. Y. -S. Na, D. -H. Kim, C. -H. Lee, S. -W. Lee, Y. -S. Park, Y. -K. Oh, S. -H. Park and S. -K. Song, Korean J. Chem. Eng., 21, 430 (2004).

    Article  CAS  Google Scholar 

  5. J. B. Parsa and F. N. Chianeh, Korean J. Chem. Eng., 29, 1585 (2012).

    Article  CAS  Google Scholar 

  6. P. Ghosh, L. K. Thakur, A. N. Samanta and S. Ray, Korean J. Chem. Eng., 29, 1203 (2012).

    Article  CAS  Google Scholar 

  7. A. Maleki, A. H. Mahvi, R. Ebrahimi and Y. Zandsalimi, Korean J. Chem. Eng., 27, 1805 (2010).

    Article  CAS  Google Scholar 

  8. P. R. Gogate, M. Sivakumar and A. B. Pandit, Sep. Purif. Technol., 34, 13 (2004).

    Article  CAS  Google Scholar 

  9. J. W. Choi, H. K. Song, W. Lee, K. K. Koo, C. Han and B. K. Na, Korean J. Chem. Eng., 27, 1805 (2010).

    Article  Google Scholar 

  10. B. Cuiping, X. Xianfeng, G. Wenqi, F. Dexin, X. Mo, G. Zhongxue and X. Nian, Desalination, 278, 84 (2011).

    Article  Google Scholar 

  11. CH. Wu, Dyes and Pigments, 77, 24 (2008).

    Article  CAS  Google Scholar 

  12. K. Turhan and Z. Turgut, Desalination, 242, 256 (2009).

    Article  CAS  Google Scholar 

  13. A. D. Shah, N. Dai and W. A. Mitch, Environ. Sci. Technol., 47, 2799 (2013).

    Article  CAS  Google Scholar 

  14. M. Tokumura, T. Katoh, H. Ohata and Y. Kawase, Ind. Eng. Chem. Res., 48, 7965 (2009).

    Article  CAS  Google Scholar 

  15. J. Wu, H. Doan and S. Upreti, Chem. Eng. J., 142, 156 (2008).

    Article  CAS  Google Scholar 

  16. L. B. Chu, X. H. Xing, A. F. Yu, Y. N. Zhou, X. L. Sun and L. B. Jurcik, Chemosphere, 68, 1854 (2007).

    Article  CAS  Google Scholar 

  17. L. Kovalova, H. Siegrist, U. V. Gunten, J. Eugster, M. Hagenbuch, A. Wittmer, R. Moser and C. S. McArdell, Environ. Sci. Technol., 47, 7899 (2013).

    Article  CAS  Google Scholar 

  18. K. Jahnisch, V. Hessel, H. Lowe and M. Baerns, Chem. Int. Ed., 43, 406 (2004).

    Article  Google Scholar 

  19. W. Ehrfeld, V. Hessel and H. Lowe, Wiley-VCH, Weinheim (2000).

    Google Scholar 

  20. S. Ferrouillat, P. Tochon and H. Peerhossaini, Chem. Eng. Process., 45, 633 (2006).

    Article  CAS  Google Scholar 

  21. P. Valeh-e-Sheyda, M. Rahimi, A. Parsamoghadam and H. Adibi, JTICE, 46, 65 (2015).

    CAS  Google Scholar 

  22. M. Kashid, A. Renken and L. Kiwi-Minsker, Chem. Eng. J., 167, 436 (2011).

  23. M. Rahimi, B. Aghel, M. Sadeghi and M. Ahmadi, Desal Water Treat., 52, 5513 (2014).

    Article  CAS  Google Scholar 

  24. Y. Matsushita, N. Ohba, S. H. Kumada, K. Sakeda, T. Suzuki and T. Ichimura, Chem. Eng. J., 135, 303 (2008).

    Article  Google Scholar 

  25. J. R. Burns and C. Ramshaw, Trans IChemE, 77, 206 (1999).

    Article  CAS  Google Scholar 

  26. M. Gao, Z. Zeng, B. Sun, H. Zou, J. Chen and L. Shao, Chemosphere, 89, 190 (2012).

    Article  CAS  Google Scholar 

  27. M. Faryadi, M. Rahimi, S. Safari and N. Moradi, Chem. Eng. Process., 77, 13 (2014).

    Article  CAS  Google Scholar 

  28. H. Monnier, A. M. Wilhelm and H. Delmas, Chem. Eng. Sci., 54, 2953 (1999).

    Article  CAS  Google Scholar 

  29. B. A. Bhanvase, D. V. Pinjari, S. H. Sonawane, P. R. Gogate and A. B. Pandit, Ultrason Sonochem., 19, 97 (2012).

    Article  CAS  Google Scholar 

  30. B. Pohl, R. Jamshidi, G. Brenner and U. A. Peuker, Chem. Eng. Sci., 69, 365 (2012).

    Article  CAS  Google Scholar 

  31. H. Monnier, A. M. Wilhelm and H. Delmas, Chem. Eng. Sci., 55, 4009 (2000).

    Article  CAS  Google Scholar 

  32. L. Weavers and M. Hoffmann, Environ. Sci. Technol., 32, 3941 (1998).

    Article  CAS  Google Scholar 

  33. X. K. Wang, J. G. Wang, P. Q. Guo, W. L Guo and C. Wang, J. Hazard. Mater., 169, 486 (2009).

  34. S. H. Chang, K. S. Wang, H. C. Li, M. Y. Wey and J. D. Chou, J. Hazard. Mater., 172, 1131 (2009).

    Article  CAS  Google Scholar 

  35. A. Kumar, M. Paliwal, R. Ameta and S. Ameta, Indian J. Chem. Technol., 15, 7 (2008).

    CAS  Google Scholar 

  36. V. K. Garg, R. Gupta and T. Juneja, Chem. Biochem. Eng., 19, 75 (2005).

    CAS  Google Scholar 

  37. M. D. C. Cotto-Maldonado, T. Campo, E. Elizalde, A. G. Martínez, C. Morant and F. Márquez, Am. Chem. Sci. J., 3, 178 (2013).

    Article  Google Scholar 

  38. A. H. Mcheik and M. El Jamal, J. Chem. Technol. Metallur., 48, 57 (2013.

    Google Scholar 

  39. Box GEP, Draper N R. Empirical Model-Building and Response Surfaces, Wiley, New York (1987).

  40. B. Y. Chen, C. C. Hsueh, W. M. Chen and W. D. Li, JTICE, 42, 816 (2011).

    CAS  Google Scholar 

  41. K. Ravikumar, S. Ramalingam, S. Krishnan and K. Balu, Dyes Pigm., 70, 18 (2006).

    Article  CAS  Google Scholar 

  42. K. Ravikumar, S. Ramalingam, S. Krishnan and K. Balu, Dyes Pigm., 72, 66 (2007).

    Article  Google Scholar 

  43. M. Cai, S. Wang and H. Liang, Sep. Purif. Technol., 100, 74 (2012).

    Article  CAS  Google Scholar 

  44. K. Sinha, P. D. Saha and S. Datta, Dyes Pigm., 94, 212 (2012).

    Article  CAS  Google Scholar 

  45. W. J. Chen, W. T. Su and H. Y. Hsu, JTICE, 43, 246 (2012).

    CAS  Google Scholar 

  46. H. Jiao, W. Peng, J. Zhao and Ch. Xu, Desalination, 313, 36 (2013).

    Article  CAS  Google Scholar 

  47. K. Turhan, I. Durukan, S. A. Ozturkcan and Z. Turgut, Dyes Pigm., 92, 897 (2012.

    Article  CAS  Google Scholar 

  48. Montgomery D C. Design and Analysis of Experiments. Wiley, New York (2001).

  49. Ch. Tizaouia and N. Grima, Chem. Eng. J., 173, 463 (2011).

    Article  Google Scholar 

  50. M. Rahimi, S. R. Shabanian and A. A. Alsairafi, Chem. Eng. Process., 48, 762 (2009).

    Article  CAS  Google Scholar 

  51. J. Ren, S. He, Ch. Ye, G. Chen and Ch. Sun, Chem. Eng. J., 210, 374 (2012).

    Article  CAS  Google Scholar 

  52. J. F. Chen, G. Z. Chen, J. X. Wang, L. Shao and P. F. Li, AIChE J., 57, 239 (2011).

    Article  CAS  Google Scholar 

  53. Y. Ku and L. K. Wang, Ozone. Sci. Eng., 24, 133 (2002).

    Article  CAS  Google Scholar 

  54. S. Aljbour, T. Tagawa and H. Yamada, J. Ind. Eng. Chem., 15, 829 (2009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Rahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faryadi, M., Rahimi, M. & Akbari, M. Process modeling and optimization of Rhodamine B dye ozonation in a novel microreactor equipped with high frequency ultrasound wave. Korean J. Chem. Eng. 33, 922–933 (2016). https://doi.org/10.1007/s11814-015-0188-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0188-6

Keywords

Navigation