Skip to main content
Log in

Degradation of ultrahigh concentration pollutant by Fe/Cu bimetallic system at high operating temperature

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To investigate the degradation of high concentration pollutant by Fe/Cu bimetallic system at a high operating temperature, 10,000mg/L acid orange 7 (AO7) aqueous solution was treated by Fe/Cu bimetallic system at 80 oC. First, the effect of the operating temperature (30-80 °C) on the reactivity of Fe/Cu bimetallic particles was investigated thoroughly. Then, the studies on the effect of theoretical Cu mass loading, Fe/Cu dosage, stirring speed and initial pH on the reactivity of Fe/Cu bimetallic particles at a high temperature (i.e., 80 °C) were carried out, respectively. The degradation and transformation process of AO7 was studied by using COD, TOC and UV-Vis spectra. The results indicate that high concentration pollutant could be removed effectively by Fe/Cu bimetallic system at a high operating temperature. And the removal efficiencies of AO7 by Fe/Cu bimetallic system were in accordance with the pseudofirst- order model. Finally, it was observed that the high temperature could accelerate mass transport rate and overcome the high activation energy barrier to significantly improve the reactivity of Fe/Cu bimetallic particles. Therefore, the higher removal efficiency could be obtained by Fe/Cu system at a high operating temperature. Thus, the high operating temperature played a leading role in the degradation of high concentration pollutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Collado, D. Quero, A. Laca and M. Díaz, Chem. Eng. J., 234, 484 (2013).

    Article  CAS  Google Scholar 

  2. Z. B. Chen, H. C. Wang, N. Q. Ren, M. H. Cui, S. K. Nie and D. X. Hu, J. Hazard. Mater., 197, 49 (2011).

    Article  CAS  Google Scholar 

  3. Y. Yang, P. Wang, S. J. Shi and Y. Liu, J. Hazard. Mater., 168, 238 (2009).

    Article  CAS  Google Scholar 

  4. D. Fu, Y. H. Zhang, F. Z. Lv, P. K. Chu and J. W. Shang, Chem. Eng. J., 193-194, 39 (2012).

    Article  CAS  Google Scholar 

  5. Q. L. Zhao, Z. F. Ye and M. H. Zhang, Chemosphere, 80, 947 (2010).

    Article  CAS  Google Scholar 

  6. H. Cheng, W. Xu, J. Liu, H. Wang, Y. He and G. Chen, J. Hazard. Mater., 146, 385 (2007).

    Article  CAS  Google Scholar 

  7. S. Chen, D. Sun and J. S. Chung, J. Hazard. Mater., 144, 577 (2007).

    Article  CAS  Google Scholar 

  8. G. Moussavi, A. Bagheri and A. Khavanin, J. Hazard. Mater., 237-238, 147 (2012).

    Article  CAS  Google Scholar 

  9. P. Ghosh, L. K. Thakur, A. N. Samanta and S. Ray, Korean J. Chem. Eng., 29, 1203 (2012).

    Article  CAS  Google Scholar 

  10. P. S. Kumar, M. J. S. Raja, M. Kumaresan, D. K. Loganathan and P. Chandrasekaran, Korean J. Chem. Eng., 31, 276 (2014).

    Article  CAS  Google Scholar 

  11. B. Lai, Z. Y. Chen, Y. X. Zhou, P. Yang, J. L. Wang and Z. Q. Chen, J. Hazard. Mater., 250-251, 220 (2013).

    Article  CAS  Google Scholar 

  12. B. Lai, Y. H. Zhang, Z. Y. Chen, P. Yang, Y. X. Zhou and J. L. Wang, Appl. Catal. B-environ., 144, 816 (2014).

    Article  CAS  Google Scholar 

  13. S. C. Ahn, S. Y. Oh and D. K. Cha, J. Hazard. Mater., 156, 17 (2008).

    Article  CAS  Google Scholar 

  14. S. Y. Oh, P. C. Chiu, B. J. Kim and D. K. Cha, J. Hazard. Mater., 129, 304 (2006).

    Article  CAS  Google Scholar 

  15. S. M. A. G. Ulson de Souza, E. Forgiarini and A. A. Ulson de Souza, J. Hazard. Mater., 147, 1073 (2007).

    Article  CAS  Google Scholar 

  16. D. T. Sponza, J. Hazard. Mater., 138, 438 (2006).

    Article  CAS  Google Scholar 

  17. V. Suryavathi, S. Sharma, S. Sharma, P. Saxena, S. Pandey, R. Grover, S. Kumar and K. P. Sharma, Reprod. Toxicol., 19, 547 (2005).

    Article  CAS  Google Scholar 

  18. A. Ghauch, A. M. Tuqan, N. Kibbi and S. Geryes, Chem. Eng. J., 213, 259 (2012).

    Article  CAS  Google Scholar 

  19. R. G. Saratale, G. D. Saratale, J. S. Chang and S. P. Govindwar, J. Taiwan Inst. Chem. E., 42, 138 (2011).

    Article  CAS  Google Scholar 

  20. C. T. Wang, W. L. Chou, Y. M. Kuo and F. L. Chang, J. Hazard. Mater., 169, 16 (2009).

    Article  CAS  Google Scholar 

  21. S. Wijetunga, X. F. Li and C. Jian, J. Hazard. Mater., 177, 792 (2010).

    Article  CAS  Google Scholar 

  22. A. Ghauch and A. Tuqan, Chemosphere, 73, 751 (2008).

    Article  CAS  Google Scholar 

  23. S. Caré, R. Crane, P. S. Calabrò, A. Ghauch, E. Temgoua and C. Noubactep, CLEAN-Soil, Air, Water, 41, 275 (2013).

    Article  CAS  Google Scholar 

  24. M. F. Coughlin, B. K. Kinkle and P. L. Bishop, Chemosphere, 46, 11 (2002).

    Article  CAS  Google Scholar 

  25. H. L. Lien and W. X. Zhang, Appl. Catal. B-environ., 77, 110 (2007).

    Article  CAS  Google Scholar 

  26. P. L. Brezonik, Chemical kinetics and process dynamics in aquatic system, Lewis Publishers, New York (1994).

    Google Scholar 

  27. S. J. Bransfield, D. M. Cwiertny, A. L. Rorerts and D. H. Fairbrother, Environ. Sci. Technol., 40, 1485 (2006).

    Article  CAS  Google Scholar 

  28. W. Z. Yin, J. H. Wu, P. Li, X. D. Wang, N. W. Zhu, P. X. Wu and B. Yang, Chem. Eng. J., 184, 198 (2012).

    Article  CAS  Google Scholar 

  29. W. Y. Xu, T. Y. Gao and J. H. Fan, J. Hazard. Mater., 123, 232 (2005).

    Article  CAS  Google Scholar 

  30. M. F. Hou, F. B. Li, X. M. Liu, X. G. Wang and H. F. Wan, J. Hazard. Mater., 145, 305 (2007).

    Article  CAS  Google Scholar 

  31. H. M. Hung, F. H. Ling and M. R. Hoffmann, Environ. Sci. Technol., 34, 1758 (2000).

    Article  CAS  Google Scholar 

  32. A. Ghauch, H. A. Assi and A. Tuqan, J. Hazard. Mater., 176, 48 (2010).

    Article  CAS  Google Scholar 

  33. Y. L. Jiao, C. C. Qiu, L. H. Huang, K. X. Wu, H. Y. Ma, S. H. Chen, L. M. Ma and D. L. Wu, Appl. Catal. B-environ., 91, 434 (2009).

    Article  CAS  Google Scholar 

  34. Y. Xie, Z. Fang, X. Qiu, E. P. Tsang and B. Liang, Chemosphere, 108, 433 (2014).

    Article  CAS  Google Scholar 

  35. L. M. Ma, Z. G. Ding, T. Y. Gao, R. F. Zhou, W. Y. Xu and J. Liu, Chemosphere, 55, 1207 (2004).

    Article  CAS  Google Scholar 

  36. L. M. Ma and W. X. Zhang, Environ. Sci. Technol., 42, 5384 (2008).

    Article  CAS  Google Scholar 

  37. S. J. Bransfield, D. M. Cwiertny, K. Livi and D. H. Fairbrother, Appl. Catal. B-environ., 76, 348 (2007).

    Article  CAS  Google Scholar 

  38. M. Stylidi, D. I. Kondarides and X. E. Verykios, Appl. Catal. B-environ., 47, 189 (2004).

    Article  CAS  Google Scholar 

  39. W. Feng, D. Nansheng and H. Helin, Chemosphere, 41, 1233 (2000).

    Article  CAS  Google Scholar 

  40. A. Ghauch, G. Ayoub and S. Naim, Chem. Eng. J., 228, 1168 (2013).

    Article  CAS  Google Scholar 

  41. A. Ghauch, Chemosphere, 72, 328 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Lai or Donghai Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, B., Ji, Q., Yuan, Y. et al. Degradation of ultrahigh concentration pollutant by Fe/Cu bimetallic system at high operating temperature. Korean J. Chem. Eng. 33, 207–215 (2016). https://doi.org/10.1007/s11814-015-0135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0135-6

Keywords

Navigation