Skip to main content
Log in

Estimation of local concentration from measurements of stochastic adsorption dynamics using carbon nanotube-based sensors

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a maximum likelihood estimation (MLE) method for estimating time varying local concentration of the target molecule proximate to the sensor from the time profile of monomolecular adsorption and desorption on the surface of the sensor at nanoscale. Recently, several carbon nanotube sensors have been developed that can selectively detect target molecules at a trace concentration level. These sensors use light intensity changes mediated by adsorption or desorption phenomena on their surfaces. The molecular events occurring at trace concentration levels are inherently stochastic, posing a challenge for optimal estimation. The stochastic behavior is modeled by the chemical master equation (CME), composed of a set of ordinary differential equations describing the time evolution of probabilities for the possible adsorption states. Given the significant stochastic nature of the underlying phenomena, rigorous stochastic estimation based on the CME should lead to an improved accuracy over than deterministic estimation formulated based on the continuum model. Motivated by this expectation, we formulate the MLE based on an analytical solution of the relevant CME, both for the constant and the time-varying local concentrations, with the objective of estimating the analyte concentration field in real time from the adsorption readings of the sensor array. The performances of the MLE and the deterministic least squares are compared using data generated by kinetic Monte Carlo (KMC) simulations of the stochastic process. Some future challenges are described for estimating and controlling the concentration field in a distributed domain using the sensor technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-N. Umh, H. H. Shin, J. Yi and Y. Kim, Korean J. Chem. Eng., 32, 299 (2015).

    Article  CAS  Google Scholar 

  2. S. R. Ahmed, K. Koh, E. Y. Park and J. Lee, Korean J. Chem. Eng., 30, 1825 (2013).

    Article  CAS  Google Scholar 

  3. S. Saito and A. Zettl, Carbon Nanotubes: Quantum Cylinders of Graphene, Elsevier (2008).

    Google Scholar 

  4. A. A. Boghossian, J. Zhang, P. W. Barone, N. F. Reuel, J. H. Kim, D. A. Heller, J. H. Ahn, A. J. Hilmer, A. Rwei and J. R. Arkalgud, ChemSusChem, 4, 848 (2011).

    Article  CAS  Google Scholar 

  5. L. Cognet, D. A. Tsyboulski, J.-D. R. Rocha, C. D. Doyle, J. M. Tour and R. B. Weisman, Science, 316, 1465 (2007).

    Article  CAS  Google Scholar 

  6. P. W. Barone, S. Baik, D. A. Heller and M. S. Strano, Nature Mater., 4, 86 (2005).

    Article  CAS  Google Scholar 

  7. D. A. Heller, E. S. Jeng, T.-K. Yeung, B. M. Martinez, A. E. Moll, J. B. Gastala and M. S. Strano, Science, 311, 508 (2006).

    Article  CAS  Google Scholar 

  8. J. H. Kim, J. H. Ahn, P. W. Barone, H. Jin, J. Zhang, D. A. Heller and M. S. Strano, Angew. Chem., 122, 1498 (2010).

    Article  Google Scholar 

  9. H. Jin, D. A. Heller, M. Kalbacova, J.-H. Kim, J. Zhang, A. A. Boghossian, N. Maheshri and M. S. Strano, Nature Nanotech., 5, 302 (2010).

    Article  CAS  Google Scholar 

  10. H. Jin, D. A. Heller, J.-H. Kim and M. S. Strano, Nano Lett., 8, 4299 (2008).

    Article  CAS  Google Scholar 

  11. J. Zhang, A. A. Boghossian, P. W. Barone, A. Rwei, J.-H. Kim, D. Lin, D. A. Heller, A. J. Hilmer, N. Nair and N. F. Reuel, J. Am. Chem. Soc., 133, 567 (2010).

    Article  Google Scholar 

  12. J.-H. Kim, D. A. Heller, H. Jin, P. W. Barone, C. Song, J. Zhang, L. J. Trudel, G. N. Wogan, S. R. Tannenbaum and M. S. Strano, Nature Chem., 1, 473 (2009).

    Article  CAS  Google Scholar 

  13. K. A. Fichthorn and W. H. Weinberg, J. Chem. Phys., 95, 1090 (1991).

    Article  CAS  Google Scholar 

  14. T. Jahnke and W. Huisinga, J. Math. Biol., 54, 1 (2007).

    Article  Google Scholar 

  15. A. A. Boghossian, J. Zhang, F. T. Le Floch-Yin, Z. W. Ulissi, P. Bojo, J.-H. Han, J.-H. Kim, J. R. Arkalgud, N. F. Reuel and R. D. Braatz, J. Chem. Phys., 135, 084124 (2011).

    Article  Google Scholar 

  16. Z. W. Ulissi, J. Zhang, A. A. Boghossian, N. F. Reuel, S. F. Shimizu, R. D. Braatz and M. S. Strano, J. Phys. Chem. Lett., 2, 1690 (2011).

    Article  CAS  Google Scholar 

  17. Z. W. Ulissi, M. S. Strano and R. D. Braatz, Comput. Chem. Eng., 51, 149 (2013).

    Article  CAS  Google Scholar 

  18. M. Kishida and R. D. Braatz, Optimal spatial field control of distributed parameter systems, American Control Conference 2009, IEEE, 32 (2009).

  19. E. L. Lehmann and J. P. Romano, Testing statistical hypotheses, Springer (2006).

    Google Scholar 

  20. H. Jang, J. H. Lee, R. D. Braatzf and K.-K. K. Kim, Comput. Chem. Eng., 63, 159 (2013).

    Article  Google Scholar 

  21. M. Kishida, D. W. Pack and R. D. Braatz, State-constrained optimal spatial field control for controlled release in tissue engineering, American Control Conference 2010, IEEE, 4361 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay H. Lee.

Additional information

A preliminary version of this manuscript was published as H. Jang, J. H. Lee, and R. D. Braaz, Maximum-Likelihood Parameter Estimation for Detecting Local Concentration from a Carbon Nanotube-based Sensor, in the 10th International Symposium on Dynamics and Control of Process Systems, Mumbai, India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, H., Lee, J.H. & Braatz, R.D. Estimation of local concentration from measurements of stochastic adsorption dynamics using carbon nanotube-based sensors. Korean J. Chem. Eng. 33, 33–45 (2016). https://doi.org/10.1007/s11814-015-0124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0124-9

Keywords

Navigation