Skip to main content
Log in

Kinematic analyses of a cross-slot microchannel applicable to cell deformability measurement under inertial or viscoelastic flow

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A cross-slot microchannel has been harnessed for a wide range of applications, such as label-free measurements of cell deformability and rheological characterization of complex fluids. This work investigates flow kinematics in a cross-slot microchannel used for the measurements of cell deformability utilizing finite element method (FEM)- based numerical simulation. In a cross-slot microchannel, the cell is stretched near the stagnation of the cross-slot channel, and cell deformation is significantly affected by its trajectory. Two passive methods, inertia- and viscoelasticity-based, which do not rely on any external force such as an electric field, have been applied to focus particles along the channel centerline so that the cell trajectories are unified. However, it is not well understood how the flow kinematics inside the cross-slot channel is altered by the inertial or viscoelastic effect when these two methods are employed. This work demonstrates that the flow kinematics such as the distributions of flow type and strain rate is notably changed with an increase in the Reynolds number when an inertia-based method is employed. On the other hand, flow kinematics does not significantly deviate from that of an inertia-less Newtonian fluid irrespective of the Weissenberg numbers when a viscoelasticity-based method is used. The current work will be helpful for the design and operation of a cross-slot microdevice for measuring cell deformability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C.C. Cunningham and J. Kas, Biophys. J., 81, 767 (2001).

    Article  CAS  Google Scholar 

  2. D.R. Gossett, H.T. Tse, S.A. Lee, Y. Ying, A.G. Lindgren, O.O. Yang, J. Rao, A. T. Clark and D. Di Carlo, Proc. Natl. Acad. Sci. U.S.A., 109, 7630 (2012).

    Article  CAS  Google Scholar 

  3. S. Cha, T. Shin, S.S. Lee, W. Shim, G. Lee, S. J. Lee, Y. Kim and J.M. Kim, Anal. Chem., 84, 10471 (2012).

    Article  CAS  Google Scholar 

  4. S. S. Lee, Y. Yim, K.H. Ahn and S. J. Lee, Biomed. Microdevices, 11, 1021 (2009).

    Article  Google Scholar 

  5. D. Di Carlo, J. Lab. Autom., 17, 32 (2012).

    Article  Google Scholar 

  6. S. Suresh, J. Spatz, J.P. Mills, A. Micoulet, M. Dao, C.T. Lim, M. Beil and T. Seufferlein, Acta Biomater., 1, 15 (2005).

    Article  CAS  Google Scholar 

  7. S. Chien, Annu. Rev. Physiol., 49, 177 (1987).

    Article  CAS  Google Scholar 

  8. H.T.K. Tse, D.R. Gossett, Y.S. Moon, M. Masaeli, M. Sohsman, Y. Ying, K. Mislick, R.P. Adams, J. Rao and D. Di Carlo, Sci. Transl. Med., 5, 212ra163 (2013).

  9. D.R. Gossett, H.T.K. Tse, S.A. Lee, Y. Ying, A.G. Lindgren, O.O. Yang, J. Rao, A. T. Clark and D. Di Carlo, Proc. Natl. Acad. Sci. U.S.A., 109, 7630 (2012).

    Article  CAS  Google Scholar 

  10. O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Topfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich and J. Guck, Nat. Meth., 12, 199 (2015).

    Article  CAS  Google Scholar 

  11. R. Dylla-Spears, J. E. Townsend, L. Jen-Jacobson, L. L. Sohn and S. J. Muller, Lab Chip, 10, 1543 (2010).

    Article  CAS  Google Scholar 

  12. R. I. Tanner and R. R. Huilgol, Rheol. Acta, 14, 959 (1975).

    Article  Google Scholar 

  13. D. E. Smith, H.P. Babcock and S. Chu, Science, 283, 1724 (1999).

    Article  CAS  Google Scholar 

  14. J. M. Kim and P. S. Doyle, Lab Chip, 7, 213 (2007).

    Article  CAS  Google Scholar 

  15. G. Segré and A. Silberberg, Nature, 189, 209 (1961).

    Article  Google Scholar 

  16. A. Karnis, S.G. Mason and H.L. Goldsmith, Nature, 200, 159 (1963).

    Article  Google Scholar 

  17. D. Di Carlo, D. Irimia, R. G. Tompkins and M. Toner, Proc. Natl. Acad. Sci. U.S.A., 104, 18892 (2007).

    Article  Google Scholar 

  18. A.M. Leshansky, A. Bransky, N. Korin and U. Dinnar, Phys. Rev. Lett., 98, 234501 (2007).

    Article  CAS  Google Scholar 

  19. S. Yang, S. S. Lee, S.W. Ahn, K. Kang, W. Shim, G. Lee, K. Hyun and J. M. Kim, Soft Matter, 8, 5011 (2012).

    Article  CAS  Google Scholar 

  20. S. Yang, J.Y. Kim, S. J. Lee, S. S. Lee and J. M. Kim, Lab Chip, 11, 266 (2011).

    Article  CAS  Google Scholar 

  21. J.Y. Kim, S. Ahn, S. S. Lee and J. M. Kim, Lab Chip, 12, 2807 (2012).

    Article  CAS  Google Scholar 

  22. A. Karimi, S. Yazdi and A. M. Ardekani, Biomicrofluidics, 7, 021501 (2013).

  23. X.C. Xuan, J. J. Zhu and C. Church, Microfluid. Nanofluid., 9, 1 (2010).

    Article  Google Scholar 

  24. D. Di Carlo, Lab Chip, 9, 3038 (2009).

    Article  Google Scholar 

  25. H. Amini, W. Lee and D. Di Carlo, Lab Chip, 14, 2739 (2014).

    Article  CAS  Google Scholar 

  26. G. Romeo, G. D’Avino, F. Greco, P.A. Netti and P. L. Maffettone, Lab Chip, 13, 2802 (2013).

    Article  CAS  Google Scholar 

  27. G. D’Avino, G. Romeo, M.M. Villone, F. Greco, P.A. Netti and P.L. Maffettone, Lab Chip, 12, 1638 (2012).

    Article  Google Scholar 

  28. K. Kang, S. S. Lee, K. Hyun, S. J. Lee and J.M. Kim, Nat. Commun., 4, 2567 (2013).

    Google Scholar 

  29. R. B. Bird, Armstrong, R. C. and Hassager, O., Dynamics of Polymeric Liquids, Wiley Interscience, New York (1987).

    Google Scholar 

  30. B. Puangkird, F. Belblidia and M. F. Webster, J. Non-Newt. Fluid Mech., 162, 1 (2009).

    Article  CAS  Google Scholar 

  31. S. J. Haward, M. S. N. Oliveira, M. A. Alves and G. H. McKinley, Phys. Rev. Lett., 109, 128301 (2012).

    Article  Google Scholar 

  32. R. J. Poole, M.A. Alves and P. J. Oliveira, Phys. Rev. Lett., 99, 164503 (2007).

    Article  CAS  Google Scholar 

  33. S. Cha, K. Kang, J. You, S. Im, Y. Kim and J. Kim, Rheol. Acta, 53, 927 (2014).

    Article  CAS  Google Scholar 

  34. J. M. Kim, C. Kim, K.H. Ahn and S. J. Lee, J. Non-Newt. Fluid Mech., 123, 161 (2004).

    Article  CAS  Google Scholar 

  35. A.W. Liu, D. E. Bornside, R. C. Armstrong and R. A. Brown, J. Non- Newt. Fluid Mech., 77, 153 (1998).

    Article  CAS  Google Scholar 

  36. A.N. Brooks and T. J. R. Hughes, Comput. Method. Appl. M., 32, 199 (1982).

    Article  Google Scholar 

  37. R. G. Owens and T. N. Phillips, Computational Rheology, World Scientific Publishing Co., Singapore (2002).

    Book  Google Scholar 

  38. Y. Fan and M. J. Crochet, J. Non-Newt. Fluid Mech., 57, 283 (1995).

    Article  CAS  Google Scholar 

  39. M. Tanyeri, E.M. Johnson-Chavarria and C.M. Schroeder, Appl. Phys. Lett., 96, 224101 (2010).

    Article  Google Scholar 

  40. J. S. Lee, R. Dylla-Spears, N. P. Teclemariam and S. J. Muller, Appl. Phys. Lett., 90, 074103 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Min Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.M. Kinematic analyses of a cross-slot microchannel applicable to cell deformability measurement under inertial or viscoelastic flow. Korean J. Chem. Eng. 32, 2406–2411 (2015). https://doi.org/10.1007/s11814-015-0080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0080-4

Keywords

Navigation