Skip to main content
Log in

Cadmium removal from aqueous solution by brown seaweed, Sargassum angustifolium

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Four kinds of indigenous seaweed were employed for assessing their soluble cadmium biosorption performance. Sargassum angustifolium revealed the greatest capacity in the range of equilibrium cadmium concentration lower than 0.5mmol l−1. It was further examined by optimization, equilibrium, kinetic and thermodynamic studies. It was found that1 g l−1 biosorbent at initial pH of 6 and 38 °C revealed the highest Cd2+ uptake. Kinetic studies revealed that the Cd2+ biosorption included a two-stage mechanism with an initial rapid stage during the first 30 min where ion exchange was the dominant mechanism. The process gradually reached equilibrium after 40-50 min of contact where the metal adsorption occurred too low due to the intraparticle diffusion. However, it was not the sole rate-limiting step. The pseudo-second order kinetic model, unlike the pseudo-first order, excellently described the experimental data in the whole range of contact time. The Langmuir isotherm model was more successful in describing the equilibrium data than the Freundlich and D-R models. Using this isotherm model, a relationship was proposed to predict the dose of biosorbent needed for removing specific initial cadmium concentration from aqueous solution or to meet a desire equilibrium cadmium concentration. The spontaneity and endothermicity as well as increasing randomness at the solid/solution interface during the biosorption were revealed by means of the thermodynamic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Herrero, B. Cordero, P. Lodeiro, C. Rey-Castro and M. E. Sastre de Vicente, Mar. Chem., 99, 106 (2006).

    Article  CAS  Google Scholar 

  2. Z.R. Holan, B. Volesky and I. Prasetyo, Biotechnol. Bioeng., 41, 819 (1993).

    Article  CAS  Google Scholar 

  3. Z. Aksu, Sep. Purif. Technol., 21, 285 (2001).

    Article  CAS  Google Scholar 

  4. R. Say, A. Denizli and M. Yakup Arica, Bioresour. Technol., 76, 67 (2001).

    Article  CAS  Google Scholar 

  5. S. A. Jafari, S. Cheraghi, M. Mirbakhsh, R. Mirza and A. Maryamabadi, Clean, 43, 118 (2015).

    CAS  Google Scholar 

  6. P. X. Sheng, L.H. Tan, J. P. Chen and Y. P. Ting, J. Dispersion Sci. Technol., 25, 679 (2005).

    Article  Google Scholar 

  7. S. A. Jafari and S. Cheraghi, Int. Biodeterior. Biodegrad., 92, 12 (2014).

    Article  CAS  Google Scholar 

  8. R. H. S. F. Vieira and B. Volesky, Int. Microbiol., 3, 17 (2000).

    CAS  Google Scholar 

  9. M. E. Romero-González, C. J. Williams and P. H. Gardiner, Environ. Sci. Technol., 35, 3025 (2001).

    Article  Google Scholar 

  10. M. A. Hashim and K.H. Chu, Chem. Eng. J., 97, 249 (2004).

    Article  CAS  Google Scholar 

  11. M.T. K. Tsui, K. C. Cheung, N. F.Y. Tam and M. H. Wong, Chemosphere, 65, 51 (2006).

    Article  CAS  Google Scholar 

  12. B. Volesky and Z. R. Holan, Biotechnol. Progr., 11, 235 (1995).

    Article  CAS  Google Scholar 

  13. J. Wang and C. Chen, Biotechnol. Adv., 27, 195 (2009).

    Article  Google Scholar 

  14. E. Fourest and B. Volesky, Environ. Sci. Technol., 30, 277 (1995).

    Article  Google Scholar 

  15. B. Southichak, K. Nakano, M. Nomura, N. Chiba and O. Nishimura, Water Sci. Technol., 58, 697 (2008).

    Article  CAS  Google Scholar 

  16. G.E. Boyd, J. Schubert and A.W. Adamson, J. Am. Chem. Soc., 69, 2818 (1947).

    Article  CAS  Google Scholar 

  17. D. Kratochvil and B. Volesky, Trends Biotechnol., 16, 291 (1998).

    Article  CAS  Google Scholar 

  18. E. Romera, F. González, A. Ballester, M. L. Blázquez and J. A. Munoz, Bioresour. Technol., 98, 3344 (2007).

    Article  CAS  Google Scholar 

  19. C.C.V. Cruz, A. C. A. da Costa,_C. A. Henriques and A. S. Luna, Bioresour. Technol., 91, 249 (2004).

    Article  Google Scholar 

  20. R. Vimala and N. Das, J. Hazard. Mater., 168, 376 (2009).

    Article  CAS  Google Scholar 

  21. A. Chatterjee and L. Ray, J. Sci. Ind. Res., 67, 629 (2008).

    CAS  Google Scholar 

  22. P. Lodeiro, J.L. Barriada, R. Herrero and M.E. Sastre de Vicente, Environ. Pollut., 142, 264 (2006).

    Article  CAS  Google Scholar 

  23. B. Benguella and H. Benaissa, Water Res., 36, 2463 (2002).

    Article  CAS  Google Scholar 

  24. F. Zan, S. Huo, B. Xi and X. Zhao, Front. Environ. Sci. Eng., 6, 51 (2012).

    Article  CAS  Google Scholar 

  25. J.T. Matheickal, Q. Yu and G. M. Woodburn, Water Res., 33, 335 (1999).

    Article  CAS  Google Scholar 

  26. R. Leyva-Ramos, J.R. Rangel-Mendez, J. Mendoza-Barron, L. Fuentes-Rubio and R.M. Guerrero-Coronado, Water Sci. Technol., 35, 205 (1997).

    Article  CAS  Google Scholar 

  27. J. K. Park, Y. B. Jin and H.N. Chang, Biotechnol. Bioeng., 63, 116 (1999).

    Article  CAS  Google Scholar 

  28. A. Saeed, M.W. Akhter and M. Iqbal, Sep. Purif. Technol., 45, 25 (2005).

    Article  CAS  Google Scholar 

  29. A. E. Ofomaja and Y. S. Ho, J. Hazard. Mater., 139, 356 (2007).

    Article  CAS  Google Scholar 

  30. A. E. Ofomaja, Bioresour. Technol., 101, 5868 (2010).

    Article  CAS  Google Scholar 

  31. Y. S. Ho, Bioresour. Technol., 96, 1292 (2005).

    Article  CAS  Google Scholar 

  32. Y. Liu, Colloids Surf., A, 274, 34 (2006).

    Article  CAS  Google Scholar 

  33. A. Benhammou, A. Yaacoubi, L. Nibou and B. Tanouti, J. Colloid Interface Sci., 282, 320 (2005).

    Article  CAS  Google Scholar 

  34. A.M. El-Kamash, A.A. Zaki and M.A. El Geleel, J. Hazard. Mater., 127, 211 (2005).

    Article  CAS  Google Scholar 

  35. D. Mohan and K. P. Singh, Water Res., 36, 2304 (2002).

    Article  CAS  Google Scholar 

  36. T. Gosset, J. L. Trancart and D. R. Thévenot, Water Res., 20, 21 (1986).

    Article  CAS  Google Scholar 

  37. S. K. Milonjic, J. Serb. Chem. Soc., 72, 1363 (2007).

    Article  CAS  Google Scholar 

  38. Y. Liu, J. Chem. Eng. Data, 54, 1981 (2009).

    Article  CAS  Google Scholar 

  39. D. Gialamouidis, M. Mitrakas and M. Liakopoulou-Kyriakides, J. Hazard. Mater., 182, 672 (2010).

    Article  CAS  Google Scholar 

  40. A. Sari and M. Tuzen, J. Hazard. Mater., 152, 302 (2008).

    Article  CAS  Google Scholar 

  41. Y. S. Ho and G. McKay, Process Biochem., 34, 451 (1999).

    Article  CAS  Google Scholar 

  42. A. Sinha, K. K. Pant and S. K. Khare, Int. Biodeterior. Biodegrad., 71, 1 (2012).

    Article  CAS  Google Scholar 

  43. A. El-Sikaily, A. E. Nemr, A. Khaled and O. Abdelwehab, J. Hazard. Mater., 148, 216 (2007).

    Article  CAS  Google Scholar 

  44. G. McKay, M. S. Otterburn and J. A. Aga, Water Air Soil Pollut., 36, 381 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ali Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, S.A., Jamali, A. & Hosseini, A. Cadmium removal from aqueous solution by brown seaweed, Sargassum angustifolium . Korean J. Chem. Eng. 32, 2053–2066 (2015). https://doi.org/10.1007/s11814-015-0013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0013-2

Keywords

Navigation