Skip to main content
Log in

Activated sludge treatment by electro-Fenton process: Parameter optimization and degradation mechanism

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study was conducted to evaluate the mineralization of activated sludge (MAS) by a facile and environmentally friendly electro-Fenton process (EFP). The effects of initial H2O2 concentration, pH value, applied current density and operating time on MAS through determining the removal rate of chemical oxygen demand (COD) and total coliform (TC) were studied. 72% of COD was removed by indirect oxidation double-mediated based on the electro-generation of hydroxyl radical and active chlorine, under the following optimum conditions: 127mmol L-1 of hydrogen peroxide, pH=3.0, 10 mA cm-2 of DC current, 120min of operating time, and 0.22mol L-1 of NaCl as the supporting electrolyte. Only in 10 min and pH 3.0 approximately 100% of TC was removed. The findings indicated that EFP can be applied efficiently for MAS by selecting appropriate operating conditions. The bottom line is that the process is entirely effective owing to the application of green oxidants (hydroxyl radical and active chlorine) and lack of being influenced by environmental situations, which can be introduced as an alternative to current conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zhang, P. Zhang, J. Yang and Y. Chen, J. Hazard. Mater., 145, 515 (2007).

    Article  CAS  Google Scholar 

  2. M. R. Salsabil, A. Prorot, M. Casellas and C. Dagot, Chem. Eng. J., 148, 327 (2009).

    Article  CAS  Google Scholar 

  3. A. Tiehm, K. Nickel and U. Neis, Water Sci. Technol., 36, 121 (1997).

    Article  CAS  Google Scholar 

  4. J. A. Hudson, P. Lowe, Water Environ. J., 10, 436 (1996).

    Article  CAS  Google Scholar 

  5. Y. Wei, R.T. Van Houten, A. R. Borger, D.H. Eikelboom and Y. Fan, Water Res., 37, 4453 (2003).

    Article  Google Scholar 

  6. P. V. Nidheesh and R. Gandhimathi, Desalination, 299, 1 (2012).

    Article  CAS  Google Scholar 

  7. M. Zhou, Q. Tan, Q. Wang, Y. Jiao, N. Oturan and M. A. Oturan, J. Hazard. Mater., 215–216, 287 (2012).

    Google Scholar 

  8. P. Ghosh, L. K. Thakur, A. N. Samanta and S. Ray, Korean J. Chem. Eng., 29, 1203 (2012).

    Article  CAS  Google Scholar 

  9. J. Virkutyte and V. Jegatheesan, Bioresour. Technol., 100, 2189 (2009).

    Article  CAS  Google Scholar 

  10. X. Zhu, J. Tian, R. Liu and L. Chen, Sep. Purif. Technol., 81, 444 (2011).

    Article  CAS  Google Scholar 

  11. E. Atmaca, J. Hazard. Mater., 163, 109 (2009).

    Article  CAS  Google Scholar 

  12. H. Zhang, D. Zhang and J. Zhou, J. Hazard. Mater., 135, 106 (2006).

    Article  CAS  Google Scholar 

  13. Y. Y. Chu, Y. Qian, W. J. Wang and X. L. Deng, J. Hazard. Mater., 199–200, 179 (2011).

    Google Scholar 

  14. A. Babuponnusami and K. Muthukumar, Chem. Eng. J., 183, 1 (2011).

    Article  Google Scholar 

  15. E. Rosales, O. Iglesias, M. Pazos and M. Sanromán, J. Hazard. Mater., 213–214, 369 (2012).

    Google Scholar 

  16. M. M. Ghoneim, H. S. El-Desoky and N. M. Zidan, Desalination, 274, 22 (2011).

    Article  CAS  Google Scholar 

  17. E. Guivarch, S. Trevin, C. Lahitte and M.A. Oturan, Environ. Chem. Lett., 1, 38 (2003).

    Article  CAS  Google Scholar 

  18. M. Panizza and G. Cerisola, Water Res., 43, 339 (2009).

    Article  CAS  Google Scholar 

  19. C. C. Su, A.T. Chang, L. M. Bellotindos and M. C. Lu, Sep. Purif. Technol., 99, 8 (2012).

    Article  CAS  Google Scholar 

  20. Y. Sheng, L. Zhen, X. Wang, N. Li and Q. Tong, J. Environ. Sci., 22, 547 (2010).

    Article  CAS  Google Scholar 

  21. A. Özcan, Y. Sahin, A.S. Koparal and M.A. Oturan, J. Hazard. Mater., 153, 718 (2008).

    Article  Google Scholar 

  22. S. Garcia-Segura, J.A. Garrido, R.M. Rodríguez, P.L. Cabot, F. Centellas, C. Arias and E. Brillas, Water Res., 46, 2067 (2012).

    Article  CAS  Google Scholar 

  23. A. Ozcan, Y. Sahin and M. A. Oturan, Chemosphere, 73, 737 (2008).

    Article  Google Scholar 

  24. W. Horwitz (Ed.), Standard Methods for the Examination of Water and Wastewater, 20th Ed., APHA, Washington, D.C. (2005).

  25. D. Mansour, F. Fourcade, S. Huguet, I. Soutrel, N. Bellakhal, M. Dachraoui, et al., Int. Biodeter. Biodegr., 88, 29 (2014).

    Article  CAS  Google Scholar 

  26. C. Ahmed Basha, P. Soloman, M. Velan, L. R. Miranda, N. Balasubramanian and R. Siva, J. Hazard. Mater., 176, 154 (2010).

    Article  CAS  Google Scholar 

  27. G. Azarian, A. R. Mesdaghinia, F. Vaezi, R. Nabizadeh and D. Nematollahi, Iranian J. Publ. Health, 36, 57 (2007).

    CAS  Google Scholar 

  28. K. Godini, G. Azarian, D. Nematollahi, A.R. Rahmani and H. Zolghadrnasab, Res. J. Chem. Environ., 16, 98 (2012).

    Google Scholar 

  29. A.R. Rahmani, D. Nematollahi, K. Godini and G. Azarian, Sep. Purif. Technol., 107, 166 (2013).

    Article  CAS  Google Scholar 

  30. C. C. Jiang and J. F. Zhang, J. Zhejiang Univ. Sci. A., 8, 1118 (2007).

    Article  CAS  Google Scholar 

  31. A.L. Estrada, Y.Y. Li and A. Wang, J. Hazard. Mater., 227–228, 41 (2012).

    Google Scholar 

  32. C. T. Wang, W. L. Chou, M. H. Chung and Y. M. Kuo, Desalination, 253, 129 (2010).

    Article  CAS  Google Scholar 

  33. G. Patermarakis and E. Fountoukidis, Water Res., 24, 1491 (1990).

    Article  CAS  Google Scholar 

  34. C. Barrera-Díaz, G. Roa-Morales, L. ávila-Córdoba, T. Pavón-Silva and B. Bilyeu, Ind. Eng. Chem. Res., 45, 34 (2006).

    Article  Google Scholar 

  35. I. Linares-Hernández, C. Barrera-Díaz, B. Bilyeu, P. Juárez-GarcíaRojas and E. Campos-Medina, J. Hazard. Mater., 175, 688 (2010).

    Article  Google Scholar 

  36. C. Barrera-Diaz, F. Urena-Nunez, E. Campos, M. Palomar-Pardave and M. Romero-Romo, Radiat. Phys. Chem., 67, 657 (2003).

    Article  CAS  Google Scholar 

  37. J. Anotai, M.C. Lu and P. Chewpreecha, Water Res., 40, 1841 (2006).

    Article  CAS  Google Scholar 

  38. S. Curteanu, C.G. Piuleac, K. Godini and G. Azaryan, Chem. Eng. J., 172, 267 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ghasem Azarian or Kazem Godini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, A.R., Nematollahi, D., Azarian, G. et al. Activated sludge treatment by electro-Fenton process: Parameter optimization and degradation mechanism. Korean J. Chem. Eng. 32, 1570–1577 (2015). https://doi.org/10.1007/s11814-014-0362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0362-2

Keywords

Navigation