Skip to main content

Advertisement

Log in

Hydrogen selectivity and permeance effect on the water gas shift reaction (WGSR) in a membrane reactor

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Simulated results are presented using a reaction rate equation and a one-dimensional reactor model for a water gas shift reaction (WGSR) in a membrane reactor (MR) with a feed stream obtained from coal gasifiers. CO conversion in a MR at 423–573 K was higher than equilibrium conversion at the same temperature. The effect of two important parameters of a membrane, hydrogen selectivity and hydrogen permeance, on MR performance was studied and hydrogen selectivity was favorable for enhanced CO conversion, reduced CO concentration, and enhanced fuel-cell grade hydrogen. Hydrogen permeance was also favorable for CO conversion enhancement in a MR due to an increased driving force between the shell side (retentate) and the tube side (permeate) of a membrane. The criteria of a hydrogen permeance of higher than 8×10−8 mol m−2s−1Pa−1 and a hydrogen selectivity of 100 were suggested to produce a fuel-cell grade hydrogen (CO concentration less than 50 ppm) in the permeate and a concentrated CO2 (more than 90%) in the retentate simultaneously in a MR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Sanchez Marcano and T. T. Tsotsis, Catalytic membranes and membrane reactors, WILEY-VCH, Weinheim (2002).

    Book  Google Scholar 

  2. D. Lee, P. Hacarlioglu and S.T. Oyama, Top. Catal., 29, 45 (2004).

    Article  CAS  Google Scholar 

  3. S. Irusta, J. Munera, C. Carrara, E. A. Lombardo and L. M. Cornaglia, Appl. Catal. A: Gen., 287, 147 (2005).

    Article  CAS  Google Scholar 

  4. T. Tsuru, K. Yamaguchi, T. Yoshioka and M. Asaeda, AIChE J., 50, 2794 (2004).

    Article  CAS  Google Scholar 

  5. P. Hacarlioglu, Y. Gu and S.T. Oyama, J. Nat. Gas Chem., 15, 73 (2006).

    Article  CAS  Google Scholar 

  6. J. Tong and Y. Matsumura, Appl. Catal. A: Gen., 286, 226 (2005).

    Article  CAS  Google Scholar 

  7. C. S. Patil, M. van Sint Annaland and J. A. M. Kuipers, Chem. Eng. Sci., 62, 2989 (2007).

    Article  CAS  Google Scholar 

  8. E. Kikuchi, S. Kawabe and M. Matsukata, J. Jpn. Pet. Inst., 46, 93 (2003).

    Article  CAS  Google Scholar 

  9. D.-W. Lee, S.-E. Nam, B. Sea, S.-K. Ihm and K.-H. Lee, Catal. Today, 118, 198 (2006).

    Article  CAS  Google Scholar 

  10. A. Basile, F. Gallucci and L. Paturzo, Catal. Today, 104, 244 (2005).

    Article  CAS  Google Scholar 

  11. H. Lim, Y. Gu and S.T. Oyama, J. Membr. Sci., 351, 149 (2010).

    Article  CAS  Google Scholar 

  12. H. Lim, Y. Gu and S.T. Oyama, J. Membr. Sci., 396, 119 (2012).

    Article  CAS  Google Scholar 

  13. S. Tosti, A. Basile, F. Borgognoni, V. Capaldo, S. Cordiner, S. Di Cave, F. Gallucci, C. Rizzello, A. Santucci and E. Traversa, J. Membr. Sci., 308, 250 (2008).

    Article  CAS  Google Scholar 

  14. S. Tosti, A. Basile, F. Borgognoni, V. Capaldo, S. Cordiner, S. Di Cave, F. Gallucci, C. Rizzello, A. Santucci and E. Traversa, J. Membr. Sci., 308, 258 (2008).

    Article  CAS  Google Scholar 

  15. S. Tosti, A. Basile, G. Chiappetta, C. Rizzello and V. Violante, Chem. Eng. J., 93, 23 (2003).

    Article  CAS  Google Scholar 

  16. A. Basile, G. Chiappetta, S. Tosti and V. Violante, Sep. Purif. Technol., 25, 549 (2001).

    Article  CAS  Google Scholar 

  17. A. Brunetti, G. Barbieri, E. Drioli, K.-H. Lee, B. Sea and D.-W. Lee, Chem. Eng. Process., 46, 119 (2007).

    Article  CAS  Google Scholar 

  18. A. Brunetti, A. Caravella, G. Barbieri and E. Drioli, J. Membr. Sci., 306, 329 (2007).

    Article  CAS  Google Scholar 

  19. G. Barbieri, A. Brunetti, G. Tricoli and E. Drioli, J. Power Sources, 182, 160 (2008).

    Article  CAS  Google Scholar 

  20. D. Mendes, V. Chibante, J.-M. Zheng, S. Tosti, F. Borgognoni, A. Mendes and L. M. Madeira, Int. J. Hydrogen Energy, 35, 12596 (2010).

    Article  CAS  Google Scholar 

  21. D. Mendes, S. Sá, S. Tosti, J. M. Sousa, L. M. Madeira and A. Mendes, Chem. Eng. Sci., 66, 2356 (2011).

    Article  CAS  Google Scholar 

  22. Y. Zhang, Z. Wu, Z. Hong, X. Gu and N. Xu, Chem. Eng. J., 197, 314 (2012).

    Article  CAS  Google Scholar 

  23. C.A. Cornaglia, S. Tosti, M. Sansovini, J. Munera and E. A. Lombardo, Appl. Catal. A: Gen., 462–463, 278 (2013).

    Article  Google Scholar 

  24. C.A. Cornaglia, M.E. Adrover, J.F. Múnera, M.N. Pedernera, D.O. Borio and E. A. Lombardo, Int. J. Hydrogen Energy, 38, 10485 (2013).

    Article  CAS  Google Scholar 

  25. C. P. P. Singh and D.N. Saraf, Ind. Eng. Chem. Proc. Des. Dev., 16(3), 313 (1977).

    Article  CAS  Google Scholar 

  26. C.V. Ovesen, P. Stoltze, J. K. Norskov and C.T. Campbell, J. Catal., 134, 445 (1992).

    Article  CAS  Google Scholar 

  27. J. Sun, J. DesJardins, J. Buglass and K. Liu, Int. J. Hydrogen Energy, 30, 1259 (2005).

    Article  CAS  Google Scholar 

  28. A.A. Phatak, N. Koryabkina, S. Rai, J. L. Ratts, W. Ruettinger, R. J. Farrauto, G. E. Blau, W. N. Delgass and F.H. Ribeiro, Catal. Today, 123, 224 (2007).

    Article  CAS  Google Scholar 

  29. Y. Choi and H. G. Stenger, J. Power Sources, 124, 432 (2003).

    Article  CAS  Google Scholar 

  30. S. T. Oyama and H. Lim, Chem. Eng. J., 151, 351 (2009).

    Article  CAS  Google Scholar 

  31. http://www.netl.doe.gov/technologies/ccbtl/refshelf/pubs/Membrane%20test%20protocol%20v10_2008_final10092008.pdf.

  32. D. Pizzi, R. Worth, M. G. Baschetti, G. C. Sarti and K. Noda, J. Membr. Sci., 325, 446 (2008).

    Article  CAS  Google Scholar 

  33. Z.W. Dunbar and D. Chu, J. Power Sources, 217, 47 (2012).

    Article  CAS  Google Scholar 

  34. B. Dittmar, A. Behrens, N. Schödel, M. Rüttinger, Th. Franco, G. Straczewski and R. Dittmeyer, Int. J. Hydrogen Energy, 38, 8759 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hankwon Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, H. Hydrogen selectivity and permeance effect on the water gas shift reaction (WGSR) in a membrane reactor. Korean J. Chem. Eng. 32, 1522–1527 (2015). https://doi.org/10.1007/s11814-014-0359-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0359-x

Keywords

Navigation