Skip to main content
Log in

Performance of the water gas shift process with a ruthenium catalyst for hydrogen production in a membrane reactor

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The water gas shift process (WGS) was developed in the presence of a ruthenium catalyst (Ru 2 wt%/TiO2), identified in anatase form (2θ 25.31°, 37.67°, 47.95°) and having the textural characteristics 82 m2 g−1 and 0.37 cm3 g−1. Prior to the reaction operations, independent experiments with hydrogen-argon fluxes indicated permeation selectivity for hydrogen in the Pd–Ag membrane, which increased when the H2/Ar ratio and temperature were higher. The catalytic processing was performed in a membrane reactor (MR) at moderate temperatures (453–573 K) under atmospheric pressure. The operations were initially performed in a fixed bed reactor mode, without hydrogen permeation, and then improved due to membrane operation, when higher carbon monoxide conversions were obtained at all temperatures. At 573 K, with and without permeation, 90 and 75% of the carbon monoxide conversions were obtained. The higher conversions reached the maximum conversion predicted by the thermodynamic equilibrium. In the operations performed with permeation (MR), hydrogen recovery (75–96%) was 4–6 times higher than that obtained without permeation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chiappetta G, Clarizia G, Drioli E (2006) Improvement of membrane reactor performance in hydrogen production. Desalination 200:695–696

    Article  CAS  Google Scholar 

  2. Johnston MB (2005) Hydrogen: the energy source for the 21st century. Technovation 25:569–585

    Article  Google Scholar 

  3. Galuszka J, Giddings T, Iaquaniello G (2012) Membrane assisted WGSR—experimental study and reactor modeling. Chem Eng J 213:363–370

    Article  CAS  Google Scholar 

  4. Smith RJB, Loganathan M, Shantha MS (2010) A review of the water gas shift reaction kinetics. Int J Chem React Eng 8(1):1–32

    Google Scholar 

  5. Ratnasamy C, Wagner JP (2009) Water gas shift catalysis. Catal Rev 51(3):325–440

    Article  CAS  Google Scholar 

  6. Panagiotopoulou P, Kondarides DI (2004) Effect of morphological characteristics of TiO2-supported noble metal catalysts on their activity for the water–gas shift reaction. J Catal 225:327–336

    Article  CAS  Google Scholar 

  7. Bi Y, Xu H, Li W, Goldbach A (2009) Water–gas shift reaction in a Pd membrane reactor over Pt/Ce0.6Zr0.4O2 catalyst. Int J Hydrog Energy 34:2965–2971

    Article  CAS  Google Scholar 

  8. Soria MA, Tosti S, Mendes A, Madeira LM (2015) Enhancing the low temperature water-gas shift reaction through a hybrid sorption-enhanced membrane reactor for high-purity hydrogen production. Fuel 159:854–863

    Article  CAS  Google Scholar 

  9. Andreevaa D, Idakieva V, Tabakovaa T, Ilievaa L, Falaras P, Bourlinos A, Travlos A (2002) Low-temperature water-gas shift reaction over Au/CeO2 catalysts. Catal Today 72(1–2):51–57

    Article  Google Scholar 

  10. Gallucci F, Fernandez E, Corengia P, van Sint Annaland M (2013) Recent advances on membranes and membrane reactors for hydrogen production. Chem Eng Sci 92:40–66

    Article  CAS  Google Scholar 

  11. Marín P, Díez FV, Ordóñez S (2012) Fixed bed membrane reactors for WGSR-based hydrogen production: optimisation of modelling approaches and reactor performance. Int J Hydrog Energy 37(6):4997–5010

    Article  Google Scholar 

  12. Dittmeyer R, Höllein V, Daub K (2001) Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium. J Mol Catal A 173:135–184

    Article  CAS  Google Scholar 

  13. Gimeno MP, Wu ZT, Soler J, Herguido J, Li K, Menéndez M (2009) Combination of a two-zone fluidized bed reactor with a Pd hollow fiber membrane for catalytic alkane dehydrogenation. Chem Eng J 155:298–303

    Article  CAS  Google Scholar 

  14. Tong J, Matsumura Y, Suda H, Haraya K (2005) Experimental study of steam reforming of methane in a thin Pd-based membrane reactor. Ind Eng Chem Res 44:1454–1465

    Article  CAS  Google Scholar 

  15. Hwang KR, Lee SW, Ryi SK, Kim DK, Kim TH, Park JS (2013) Water-gas shift reaction in a plate-type Pd-membrane reactor over a nickel metal catalyst. Fuel Process Technol 106:133–140

    Article  CAS  Google Scholar 

  16. Yun S, Ted Oyama S (2011) Correlations in palladium membranes for hydrogen separation: a review. J Memb Sci 375(1–2):28–45

    Article  CAS  Google Scholar 

  17. Lewis FA (1967) The palladium hydrogen system. Acad Press, New York

    Google Scholar 

  18. Silva FSA, Benachour M, Abreu CAM (2015) Evaluation of hydrogen production by reforming of biogas in a membrane reactor. Braz J Chem Eng 32:201–210

    Article  CAS  Google Scholar 

  19. Moe JM (1962) Design of water-gas shift reactors. Chem Eng Prog 58(3):33–36

    CAS  Google Scholar 

  20. Rival O, Grandjean BPA, Guy C, Sayari A, Larachi F (2001) Oxygen-free methane aromatization in a catalytic membrane reactor. Kinet Catal React Eng 40:2212–2219

    CAS  Google Scholar 

  21. Queiroz GA, Barbosa CMBM, Abreu CAM (2016) Low-temperature water-gas shift reaction with Ru/TiO2 and Ru/Al2O3 catalysts. Braz J Pet Gas 10(3):135–144

    Article  Google Scholar 

  22. Al-mufachi NA, Rees NV, Steinberger-wilkens R (2015) Hydrogen selective membranes: a review of palladium-based dense metal membranes. Renew Sustain Energy Rev 47:540–551

    Article  CAS  Google Scholar 

  23. Tosti S, Basile A, Chiappetta G, Rizzello C, Violante V (2003) Pd–Ag membrane reactors for water gas shift reaction. Chem Eng J 93:23–30

    Article  CAS  Google Scholar 

  24. Brunetti A, Caravella A, Barbieri G, Drioli E (2007) Simulation study of water gas shift reaction in a membrane reactor. J Membr Sci 306:329–340

    Article  CAS  Google Scholar 

  25. Giessler S, Jordan L, Costa JCD, Lu GQ (2003) Performance of hydrophobic and hydrophilic silica membrane reactors for the water gas shift reaction. Purif Technol 32:255–264

    Article  CAS  Google Scholar 

  26. Mendes D, Chibante V, Zheng J-M, Tosti S, Borgognoni F, Mendes A, Madeira LM (2010) Enhancing the production of hydrogen via water-gas shift reaction using Pd-based membrane reactors. Int J Hydrog Energy 35(22):12596–12608

    Article  CAS  Google Scholar 

  27. Zhang Y, Wu Z, Hong Z, Gu X, Xu N (2012) Hydrogen-selective zeolite membrane reactor for low temperature water gas shift reaction. Chem Eng J 197:314–321

    Article  CAS  Google Scholar 

  28. Mendes D, Sá S, Tosti S, Sousa JM, Madeira LM, Mendes A (2011) Experimental and modeling studies on the low-temperature water-gas shift reaction in a dense Pd-Ag packed-bed membrane reactor. Chem Eng Sci 66:2356–2367

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Federal University of Pernambuco, PRH 28- ANP (National Petroleum Agency, Brazil), FINEP and CETENE by the financial support to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germana Arruda de Queiroz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Queiroz, G.A., de Menezes Barbosa, C.M.B., A. Pimentel, C. et al. Performance of the water gas shift process with a ruthenium catalyst for hydrogen production in a membrane reactor. Reac Kinet Mech Cat 123, 679–687 (2018). https://doi.org/10.1007/s11144-017-1313-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1313-9

Keywords

Navigation