Skip to main content
Log in

Kinetics and modeling of methyl methacrylate graft copolymerization in the presence of natural rubber latex

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A graft copolymerization model for using cumene hydroperoxide/tetraethylenepentamine (CHPO/TEPA) as a redox initiator was developed to describe the grafting of methyl methacrylate onto natural rubber latex as a core-shell particle. The model allows estimating the effects of the initiator concentration, monomer-rubber weight ratio, and temperature on the properties of graft product, e.g., % grafting efficiency and the % monomer composition in the graft copolymer and free polymer. The rate expressions of polymer chain formation are developed by taking into account a reduction of CHPO by TEPA and a population event of radicals between core/shell phases. The parameter estimation is performed to find the kinetic parameters. Validation with experimental results demonstrates a good applicability of the proposed model. The model results reveal that the formation of grafted polymer chains rather form by the chain transfer reaction to rubber chains from homopolymer radicals and the initiation reaction of cumyloxy radicals to rubber chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. www2.ops3.moc.go.th (15 August 2013).

  2. Y. C. Ko and G. Park, Korean J. Chem. Eng., 24, 975 (2007).

    Article  CAS  Google Scholar 

  3. A. A. El-Wakil, Polym. Plast. Technol. Eng., 46, 661 (2007).

    Article  CAS  Google Scholar 

  4. V. K. Thakur, M. K. Thakur and R.K. Gupta, Carbohyd. Polym., 98, 820 (2013).

    Article  CAS  Google Scholar 

  5. V. K. Thakur, M. K. Thakur and R.K. Gupta, Carbohyd. Polym., 104, 87 (2014).

    Article  CAS  Google Scholar 

  6. K. A. Shaffei, A.B. Moustafa and W. S. Mohamed, J. Appl. Polym. Sci., 109, 3923 (2008).

    Article  CAS  Google Scholar 

  7. R. Anbarasan, T. Vasudevan and A. Gopalan, J. Mater. Sci., 35, 617 (2000).

    Article  CAS  Google Scholar 

  8. P. C. Oliveira, A. M. Oliveira, A. Garcia, J. C. S. Barboza, C. A.C. Zavaglia and S. M. C. Santos, Eur. Polym. J., 41, 1883 (2005).

    Article  Google Scholar 

  9. V.K. Thakur, M. K. Thakur and R.K. Gupta, Carbohyd. Polym., 97, 18 (2013).

    Article  CAS  Google Scholar 

  10. R.A. Bakar and M. S. Fauzi, J. Chem. Chem. Eng., 6, 962 (2012).

    Google Scholar 

  11. N.M. Claramma, N.M. Mathew and E.V. Thomas, Int. J. Radiat. Appl. Instrum. Part C Radiat. Phys. Chem., 33, 87 (1989).

    CAS  Google Scholar 

  12. E. M. Bevilacqua, J. Polym. Sci., 24, 292 (1957).

    Article  CAS  Google Scholar 

  13. S. B. Neoh, A.R. Azura and A. S. Hashim, Polym. Plast. Technol. Eng., 50, 121 (2011).

    Article  CAS  Google Scholar 

  14. K. Eawsuwan, Natural rubber grafted styrene/methyl methacrylate as impact modifier for poly (vinyl chloride), Thesis, Chulalongkorn University (2003).

    Google Scholar 

  15. H. Liu, D. Zuo, H. Liu, L. Li, J. Li and W. Xu, E-Polym., 10, 1499 (2013).

    Google Scholar 

  16. www.regitex.jp/english/mg.html (15 August 2013).

  17. G. N. Onyeagoro, Acad. Res. Int., 3, 387 (2012).

    Google Scholar 

  18. S.P. Low, A. Ahmad, H. Hamzah and M.Y.A. Rahman, J. Solid State Electrochem., 15, 2611 (2011).

    Article  CAS  Google Scholar 

  19. W. Wongthep, S. Srituileong, S. Martwiset and S. Amnuaypanich, J. Appl. Polym. Sci., 127, 104 (2013).

    Article  CAS  Google Scholar 

  20. E. Kalkornsurapranee, K. Sahakaro, A. Kaesaman and C. Nakason, J. Elastomers Plast., 42, 17 (2010).

    Article  CAS  Google Scholar 

  21. T. Kochthongrasamee, P. Prasassarakich and S. Kiatkamjornwong, J. Appl. Polym. Sci., 101, 2587 (2006).

    Article  CAS  Google Scholar 

  22. E. Kalkornsurapranee, K. Sahakaro, A. Kaesaman and C. Nakason, J. Appl. Polym. Sci., 114, 587 (2009).

    Article  CAS  Google Scholar 

  23. A. S. Singha, A. Guleria and R. K. Rana, Int. J. Polym. Anal. Ch., 18, 1 (2013).

    Article  CAS  Google Scholar 

  24. K. Songsing, T. Vatanatham and N. Hansupalak, Eur. Polym. J., 49, 1007 (2013).

    Article  CAS  Google Scholar 

  25. W. Arayapranee and G. L. Rempel, J. Appl. Polym. Sci., 93, 455 (2004).

    Article  CAS  Google Scholar 

  26. J.-Y. Park and O. O. Park, Korean J. Chem. Eng., 11, 221 (1994).

    Article  CAS  Google Scholar 

  27. C.G. Gutierrez, D.A. Estenoz, L.M. Gugliotta, J.R. Vega and G.R. Meira, Latin. Am. Appl. Res., 36, 309 (2006).

    CAS  Google Scholar 

  28. L. Li, L. Wu, Z. Bu, C. Gong, B.-G. Li and K.-D. Hungerberg, Macromol. React. Eng., 6, 384 (2012).

    Article  CAS  Google Scholar 

  29. C. S. Chern and G.W. Poehlein, J. Polym. Sci. Part. A: Polym. Chem., 28, 3073 (1990).

    Article  CAS  Google Scholar 

  30. W. Kangwansupamonkon, C. M. Fellows, D. J. Lamb, R. G. Gilbert and S. Kiatkamjornwong, Polymer, 45, 5775 (2004).

    Article  CAS  Google Scholar 

  31. J. Zhao, H. Yuan and Z. Pan, J. Appl. Polym. Sci., 53, 1447 (1994).

    Article  CAS  Google Scholar 

  32. C. S. Chern and G.W. Poehlein, J. Polym. Sci. Part A: Polym. Chem., 25, 617 (1987).

    Article  CAS  Google Scholar 

  33. W. Liu, R. Zheng and Z. He, Polym. Bull., 61, 27 (2008).

    Article  CAS  Google Scholar 

  34. C. S. Chern, Prog. Polym. Sci., 31, 443 (2006).

    Article  CAS  Google Scholar 

  35. C. F. Lee and W. Y. Chiu, J. Appl. Polym. Sci., 56, 1263 (1995).

    Article  CAS  Google Scholar 

  36. W. H. Stockmayer, J. Polym. Sci., 24, 314 (1957).

    Article  CAS  Google Scholar 

  37. J. T. O’Toole, J. Appl. Polym. Sci., 9, 1291 (1965).

    Article  Google Scholar 

  38. D. C. Sundberg, J. Arndt and M.Y. Tang, J. Dispersion Sci. Technol., 5, 433 (1984).

    Article  CAS  Google Scholar 

  39. M. J. Ballard, D.H. Napper and R.G. Gilbert, J. Polym. Sci. Polym. Chem. Ed., 22, 3225 (1984).

    Article  CAS  Google Scholar 

  40. R. J. Orr and H. L. Williams, Can. J. Chem., 30, 985 (1952).

    Article  CAS  Google Scholar 

  41. Solvay Chemicals, Determination of hydrogenperoxide concentration (0.1% to 5%) Technical Datasheet TDS XX-122, Solvay Chemicals Inc., Brussels, Belgium (2004).

    Google Scholar 

  42. W.D. Harkins, J. Am. Chem. Soc., 69, 1428 (1947).

    Article  CAS  Google Scholar 

  43. G. M. Burnett and R. S. Lehrle, Proc. R. Soc. London, Ser. A., 253, 331 (1959).

    Article  CAS  Google Scholar 

  44. S. H. Herzfeld, A. Roginsky, M. L. Corrin and W.D. Harkins, J. Polym. Sci., 5, 207 (1949).

    Article  Google Scholar 

  45. J. C. Ramirez, J. Herrera-Ordonez and H. Maldonado-Textle, Polym. Bull., 53, 333 (2005).

    Article  CAS  Google Scholar 

  46. F. R. Mayo, J. Am. Chem. Soc., 65, 2324 (1943).

    Article  CAS  Google Scholar 

  47. V. Stannett and R.B. Mesrobian, J. Am. Chem. Soc., 72, 4125 (1950).

    Article  CAS  Google Scholar 

  48. J.W. L. Fordham and H. L. Williams, J. Am. Chem. Soc., 72, 4465 (1950).

    Article  CAS  Google Scholar 

  49. J.W. L. Fordham and H. L. Williams, J. Am. Chem. Soc., 73, 1634 (1951).

    Article  CAS  Google Scholar 

  50. I. Reetz, Y. Yagci and M. K. Mishra, in Handbook of radical vinyl polymerization, M. K. Mishra and Y. Yagci, Eds., Marcel Dekker, New York, 45 (1998).

  51. S. K. Soh, J. Appl. Polym. Sci., 25, 2993 (1980).

    Article  CAS  Google Scholar 

  52. R. G. Gilbert, Pure Appl. Chem., 68, 1491 (1996).

    Article  CAS  Google Scholar 

  53. Q. Kunyuan, S. Li and F. Xinde, Polym. Commun., 1, 64 (1984).

    Google Scholar 

  54. G. Odian, Principles of polymerization, 4 th Ed., Wiley-Interscience, Hoboken, New Jersey, 270, 364 (2004).

    Google Scholar 

  55. B.C.Y. Whang, M. J. Ballard, D.H. Napper and R.G. Gilbert, Aust. J. Chem., 44, 1133 (1991).

    Article  CAS  Google Scholar 

  56. K.Y. van Berkel, G.T. Russell and R.G. Gilbert, Macromolecules, 38, 3214 (2005).

    Article  Google Scholar 

  57. D. Kukulj, T.P. Davis and R.G. Gilbert, Macromolecules, 31, 994 (1998).

    Article  CAS  Google Scholar 

  58. S. Kongparakul, P. Prasassarakich and G. L. Rempel, Eur. Polym. J., 45, 2358 (2009).

    Article  CAS  Google Scholar 

  59. A. Rouilly, L. Rigal and R. G. Gilbert, Polymer, 45, 7813 (2004).

    Article  CAS  Google Scholar 

  60. C. I. Kao, D. P. Gundlach and R.T. Nelsen, J. Polym. Sci., 22, 3499 (1984).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanvimon Arayapranee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirirat, T., Vatanatham, T., Hansupalak, N. et al. Kinetics and modeling of methyl methacrylate graft copolymerization in the presence of natural rubber latex. Korean J. Chem. Eng. 32, 980–992 (2015). https://doi.org/10.1007/s11814-014-0274-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0274-1

Keywords

Navigation