Skip to main content
Log in

Poly (dimethylsiloxane)-poly (tetrafluoroethylene)/poly (vinylidenefluoride) (PDMS-PTFE/PVDF) hollow fiber composite membrane for pervaporation of chloroform from aqueous solution

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A novel PDMS-PTFE/PVDF hollow fiber composite membrane using PTFE-PDMS as the top active layer and PVDF hollow fiber as the support layer was prepared for the pervaporation of chloroform from water. Sorption and diffusion behaviors of chloroform and water in PDMS-PTFE membranes, which had different PTFE content, were investigated. The results showed that with increasing PTFE content from 0 wt% to 40 wt%, chloroform/water ideal separation factor first increased and then decreased, and permeabilities of both chloroform and water increased. For the 30% PTFE-PDMS membrane, when feed temperature ranged from 40 °C to 60 °C, permeabilities of both chloroform and water increased, but ideal separation factor for chloroform/water first increased and then decreased. Effects of operating conditions, such as feed flow rate, active layer thickness, feed concentration and feed temperature, on PV performances of the 30% PDMS-PTFE/PVDF hollow fiber membrane for the pervaporation of chloroform-water mixtures were studied. Examination showed that concentration polarization on the membrane surface occurred when feed flow rate was less than 3,000 mL/min. With the increase in active layer thickness from 13.8 to 78.0 μm, chloroform flux and water flux dropped from 21 to 13 g·h−1·m−2 and from 93 to 22 g·h−1·m−2, respectively, but the separation factor increased from 1494 to 3949. With an increase of feed concentration from 55 to 850 ppm, chloroform flux increased linearly but water flux remained constant, and separation factor decreased. With an increase of the feed temperature from 40 to 60 °C, both flux and separation factor increased, the variation of permeation flux followed the Arrhenius relationship, and the activation energy values were 21.65 and 9.6 KJ/mol for water and chloroform, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Y. Jee and Y. T. Lee, J. Membr. Sci., 456, 1 (2014).

    Article  CAS  Google Scholar 

  2. X. R. Zhang, C. C. Li and X. G. Hao, Chem. Eng. Sci., 108, 183 (2014).

    Article  CAS  Google Scholar 

  3. D. Sun, B. B. Li and Z. L. Xu, Korean J. Chem. Eng., 30, 2059 (2013).

    Article  CAS  Google Scholar 

  4. M. Omidali, A. Raisi and A. Aroujalian, Chem. Eng. Process., 77, 22 (2014).

    Article  CAS  Google Scholar 

  5. M. Bennett, B. J. Brisdon, R. England and R.W. Field, J. Membr. Sci., 137, 63 (1997).

    Article  CAS  Google Scholar 

  6. S. B. Kuila and S.K. Ray, Chem. Eng. Res. Des., 91, 377 (2013).

    Article  CAS  Google Scholar 

  7. G.M. Shi, H.M. Chen, Y. C. Jean and T. S. Chung, Polym., 54, 774 (2013).

    Article  CAS  Google Scholar 

  8. P. Das and S. K. Ray, Sep. Purif. Technol., 116, 433 (2013).

    Article  CAS  Google Scholar 

  9. K. P. Ramaiah, D. Satyasri, S. Sridhar and A. Krishnaiah, J. Hazard. Mater., 261, 362 (2013).

    Article  CAS  Google Scholar 

  10. C. R. Mason, M.G. Buonomenna and G. Golemme, Polym., 54, 2222 (2013).

    Article  CAS  Google Scholar 

  11. S. J. Lue, T. H. Yang, K. S. Chang and K. L Tung, J. Membr. Sci., 415–416, 635 (2012).

    Article  Google Scholar 

  12. Y. Shirazi, A. Ghadimi and T. Mohammadi, J. Appl. Polym. Sci., 124, 2871 (2012).

    Article  CAS  Google Scholar 

  13. C. Y. Chen, Z. Y. Xiao and X. Y. Tang, Bioresour. Technol., 128, 246 (2013).

    Article  CAS  Google Scholar 

  14. B. Li, S. N. Yu and Z.Y. Jiang, J. Hazard. Mater., 211, 296 (2012).

    Article  Google Scholar 

  15. G. P. Liu, W. Wei and W.Q. Jin, Chin. J. Chem. Eng., 20, 62 (2012).

    Article  Google Scholar 

  16. H. J. Lee, E. J. Cho, Y.G. Kim, I. S. Choi and H. J. Bae, Bioresour. Technol., 109, 110 (2012).

    Article  CAS  Google Scholar 

  17. Y. B. Li, T. Verbiest and I. Vankelecom, J. Membr. Sci., 428, 63 (2013).

    Article  CAS  Google Scholar 

  18. D. Panek and K. Konieczny, Sep. Purif. Technol., 57, 507 (2007).

    Article  CAS  Google Scholar 

  19. J. Li, S.L. Ji, G. J. Zhang and H. X. Guo, Langmuir, 29, 8093 (2013).

    Article  CAS  Google Scholar 

  20. T. Li, A.W.-K. Law and A.G. Fane, J. Membr. Sci., 455, 83 (2014).

    Article  CAS  Google Scholar 

  21. X. R. Wang, Y.Y. Chen, C. Zhang and X.H. Gu, J. Membr. Sci., 455, 294 (2014).

    Article  CAS  Google Scholar 

  22. A. S. Kim, J. Membr. Sci., 455, 168 (2014).

    Article  CAS  Google Scholar 

  23. S. J. Lue, C. F. Chien and K. P. O. Mahesh, J. Membr. Sci., 384, 17 (2011).

    Article  CAS  Google Scholar 

  24. Q. T. Nguyen, D. Langevin and B. Bahadori, J. Membr. Sci., 299, 73 (2007).

    Article  CAS  Google Scholar 

  25. V. Detallante, D. Langevin and C. Chappey, J. Membr. Sci., 190, 227 (2001).

    Article  CAS  Google Scholar 

  26. Q. Zhao, J.W. Qian, C.X. Zhu, Q. F. An, T.Q. Xu, Q. Zheng and Y. H. Song, J. Membr. Sci., 345, 233 (2009).

    Article  CAS  Google Scholar 

  27. H. S. Hong, L. X. Chen, Q.W. Zhang and F. He, Mater. Design., 34, 732 (2012).

    Article  CAS  Google Scholar 

  28. X. Zhan, J. Lu, T.T. Tan and J. D. Li, Appl. Surf. Sci., 259, 547 (2012).

    Article  CAS  Google Scholar 

  29. Y. I. Park, C. K. Yeom, B. S. Kim, J. K. Kim, J. S. Hong, J. M. Lee and H. J. Joo, Desalination, 233, 303 (2008).

    Article  CAS  Google Scholar 

  30. S.-Y. Li, R. J. Srivastava and R. S. Parnas, J. Membr. Sci., 363, 287 (2010).

    Article  CAS  Google Scholar 

  31. G. L. Jadav, V. K. Aswal, H. Bhatt, J.C. Chaudhari and P. S. Singh, J. Membr. Sci., 415–416, 624 (2012).

    Article  Google Scholar 

  32. I. Rutkiewicz, W. Kujawski and J. Namieoenik, Desalination, 264, 160 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Yang, P., Li, L. et al. Poly (dimethylsiloxane)-poly (tetrafluoroethylene)/poly (vinylidenefluoride) (PDMS-PTFE/PVDF) hollow fiber composite membrane for pervaporation of chloroform from aqueous solution. Korean J. Chem. Eng. 31, 1877–1884 (2014). https://doi.org/10.1007/s11814-014-0147-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0147-7

Keywords

Navigation