Skip to main content
Log in

Optimization of preparation conditions of activated carbon from the residue of desilicated rice husk using response surface methodology

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Activated carbon could be prepared from residue of rice husk using physical activation with steam as activating agent. Response surface methodology (RSM) was applied to optimize the effects of processing parameters, and regression analysis was performed on the data obtained. The optimal conditions for adsorption capacity of activated carbon from the residue of rice husk were activation temperature of 946 °C, activation time of 31 min and water (18 g) which changed to steam by heating, resulting in 970.06 mg·g−1 of iodine adsorption capacity and 31.36% of activated carbon yield. The activated carbon prepared under optimum condition was mesoporous with BET surface area of 1,004.296 m2·g−1, total pore volume of 0.9388 cm3·g−1 and average pore diameter of 2.043 nm. The surface chemical functional groups of activated carbon were identified by FT-IR, and its microstructure was examined by scanning electron microscopy (SEM). We concluded that the process of physical activation with steam could be an environmentally harmonious and effective method for preparing activated carbon from residue of desilicated rice husk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.V. Mikhalovsky and V.G. Nikolaev, Interface Sci., 7, 529 (2006).

    Article  CAS  Google Scholar 

  2. F. C. Wu, R. L. Tseng and C. C. Hu, Micropor. Mesopor. Mater., 80, 9 (2005).

    Article  Google Scholar 

  3. A. Aworn, P. Thiravety and W. Nakbanpote, J. Anal. Appl. Pyrolysis, 82, 279 (2008).

    Article  CAS  Google Scholar 

  4. M. J. Ahmed and S. K. Theydan, Powder Technol., 229, 237 (2012).

    Article  CAS  Google Scholar 

  5. R. H. Hesas, W.M.A. Van Daud, J. N. Sahu and A. Arami-Niya, J. Anal. Appl. Pyrolysis, 100, 1 (2013).

    Article  Google Scholar 

  6. S.K. Ryu, H. Jin, D. Gondy and N. Pusset, Carbon, 5, 31 (1993).

    Google Scholar 

  7. T. Wigmans, Carbon, 1, 27 (1989).

    Google Scholar 

  8. S. M. Guillermo, D. F. Geoffrey and J. S. Christopher, Carbon, 41, 1009 (2003).

    Article  Google Scholar 

  9. C. F. Chang, C.Y. Chang and W. T. Tsai, J. Colloid Interface Sci., 232, 45 (2000).

    Article  CAS  Google Scholar 

  10. B. H. Hameed, I.A.W. Tan and A. L. Ahmad, J. Hazard. Mater., 158, 324 (2008).

    Article  CAS  Google Scholar 

  11. H.Y. Kang, S. S. Park and Y. S. Rim, Korean J. Chem. Eng., 23, 948 (2006).

    Article  CAS  Google Scholar 

  12. Y.W. Zhu, J. H. Gao, Y. Li, F. Sun and Y. K. Qin, Korean J. Chem. Eng., 28, 2344 (2011).

    Article  CAS  Google Scholar 

  13. M. F. Tennant and D.W. Mazyck, Carbon, 41, 2195 (2003).

    Article  CAS  Google Scholar 

  14. H. Demiral, İ. Demiral, B. Karabacakoğlu and F. Tümsek, Chem. Eng. Res. Des., 89, 206 (2011).

    Article  CAS  Google Scholar 

  15. Y. Ngernyen, C. Tangsathitkulchai and M. Tangsathitkulchai, Korean J. Chem. Eng., 23, 1046 (2006).

    Article  CAS  Google Scholar 

  16. C.A. Toles, W.E. Marshall, L.H. Wartelle and A. McAloon, Bioresour. Technol., 75, 197 (2000).

    Article  CAS  Google Scholar 

  17. A.V. Esin and E. P. Ayşe, J. Anal. Appl. Pyrolysis, 98, 29 (2012).

    Article  Google Scholar 

  18. B. C. Kim, Y. H. Kim and T. Yamamoto, Korean J. Chem. Eng., 25, 5 (2008).

    Google Scholar 

  19. Z. Z. Chowdhury, S. M. Zain, R. A. Khan and Md. S. Islam, Korean J. Chem. Eng., 29, 1187 (2012).

    Article  CAS  Google Scholar 

  20. P. Fu, S. Hu, J. Xiang, W. M. Yi, X. Y. Bai, L. S. Sun and S. Su, Bioresour. Technol., 114, 591 (2012).

    Article  Google Scholar 

  21. C. Deiana, D. Granados, R. Venturini, A. Amaya, M. Sergio and N. Tancredi, Ind. Eng. Chem. Res., 47, 4754 (2008).

    Article  CAS  Google Scholar 

  22. Y. Lin, Y. P. Guo, W. Gao, Z. Wang, Y. J. Ma and Z. C. Wang, J. Clean Prod., 32, 204 (2012).

    Article  Google Scholar 

  23. A. A.M. Daifullah, B. S. Girgis, H. M. H. Gad, Mater. Lett., 57, 1723 (2003).

    Article  CAS  Google Scholar 

  24. S. Román, J. F. González, C. M. González-García and F. Zarmora, Fuel Process. Technol., 89, 715 (2008).

    Article  Google Scholar 

  25. J. Lee, L. Ye, W. O. Landen and R. R. Eitenmiller, J. Food Compos. Anal., 13, 45 (2000).

    Article  CAS  Google Scholar 

  26. J. M. Valente Nabais, P. Nunes, P. J. M. Carrott, M. M. L. Ribeiro Carrott, A. Macías García and M. A. Díaz-Díez, Fuel Process. Technol., 89, 262 (2008).

    Article  Google Scholar 

  27. M. A. Ahmad and R. Alrozi, Chem. Eng. J., 165, 883 (2010).

    Article  CAS  Google Scholar 

  28. X. H. Duan, C. Srinivasakannan, W.W. Qu and X. Wang, Chem. Eng. Process., 53, 53 (2012).

    Article  CAS  Google Scholar 

  29. A. A. Ahmad, B. H. Hameed and A. L. Ahmad, J. Hazard. Mater., 170, 612 (2009).

    Article  CAS  Google Scholar 

  30. A. Arami-Niya, W. M. A. Wan Daud, F. S. Mjalli and F. Abnisa, Chem. Eng. Res. Des., 90, 776 (2012).

    Article  CAS  Google Scholar 

  31. L.X. Huang, M.X. Wang, Y. P. Wu, L.R. Li and F.M. Zhou, J. Nanjing Inst. Forestry, 1, 31 (1986).

    Google Scholar 

  32. A. Aranda, R. Murillo, T. García and A. M. Mastral, Chem. Eng. J., 187, 123 (2012).

    Article  CAS  Google Scholar 

  33. Y. Sudaryanto, S. B. Hartono, W. Irawaty, H. Hindarso and S. Ismadji, Bioresour. Technol., 97, 734 (2006).

    Article  CAS  Google Scholar 

  34. B.G.P. Kumar, K. Shivakamy, L.R. Miranda and M. Velan, J. Hazard. Mater., B136, 922 (2006).

    Google Scholar 

  35. Ç. Şentorun-Shalaby, M.G. Ucak-Astarloğlu, L. Artok, Ç. Sarici, Micropor. Mesopor. Mater., 88, 126 (2006).

    Article  Google Scholar 

  36. L. S. Balistrieri and J.W. Murray, Am. J. Sci., 281, 788 (1981).

    Article  CAS  Google Scholar 

  37. P. Luo, B. Zhang, Y. Zhao, J. Wang, H. Zhang and J. Liu, Korean J. Chem. Eng., 28, 800 (2011).

    Article  CAS  Google Scholar 

  38. K. S. Kumar Reddy, A. Al Shoaibi and C. Srinivasakannan, New Carbon Mater., 27, 344 (2012).

    Article  Google Scholar 

  39. Y. B. Tang, Q. Liu and F.Y. Chen, Chem. Eng. J., 203, 19 (2013).

    Article  Google Scholar 

  40. S. K. Theydan and M. J. Ahmed, J. Anal. Appl. Pyrolysis, 97, 16 (2012).

    Article  Google Scholar 

  41. B. Bestani, N. Benderdouche, B. Benstaali, M. Belhakem and A. Addou, Bioresour. Technol., 99, 8441 (2008).

    Article  CAS  Google Scholar 

  42. W. H. Li, Q. Y. Yue, B. Y. Gao, X. J. Wang, Y. F. Qi, Y. Q. Zhao and Y. J. Li, Desalination, 278, 179 (2011).

    Article  CAS  Google Scholar 

  43. M. J. Ahmed and S. K. Theydan, J. Anal. Appl. Pyrolysis, 105, 199 (2014).

    Article  CAS  Google Scholar 

  44. K. F. Fu, Q.Y. Yue, B.Y. Gao, Y.Y. Sun and L. J. Zhu, Chem. Eng. J., 228, 1074 (2013).

    Article  CAS  Google Scholar 

  45. H. Deng, L. Yang, G. H. Tao and J. L. Dai, J. Hazard. Mater., 166, 1514 (2009).

    Article  CAS  Google Scholar 

  46. O.P.A.L. Cazetta, I. P. A. F. Souza, K. C. Bedin, A. C. Matins, T. L. Silva and V. C. Almeida, J. Ind. Eng. Chem., JIEC-1895, No. pages 7 (2014).

    Google Scholar 

  47. N. Passe-Coutrin, S. Altenor, D. Cossement, C. Jean-Marius and S. Gaspared, Micropor. Mesopor. Mater., 111, 517 (2008).

    Article  CAS  Google Scholar 

  48. Y. Chen, Y. C. Zhu, Z. C. Wang, Y. Li, L. L. Wang, L. L. Ding, X.Y. Gao, Y. J. Ma and Y. P. Guo, Adv. Colloid Interface Sci., 163, 39 (2011).

    Article  CAS  Google Scholar 

  49. V. C. Srivastava, I. D. Mall and I.M. Mishra, J. Hazard. Mater., B134, 257 (2006).

    Article  Google Scholar 

  50. U. R. Lakshmi, V. C. Srivastava, I. D. Mall and D. H. Lataye, J. Environ. Manage., 90, 710 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuli Han or Yuyuan He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., He, Y., Zhao, H. et al. Optimization of preparation conditions of activated carbon from the residue of desilicated rice husk using response surface methodology. Korean J. Chem. Eng. 31, 1810–1817 (2014). https://doi.org/10.1007/s11814-014-0103-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0103-6

Keywords

Navigation