Skip to main content

Advertisement

Log in

Efficient storage and utilization of CO2 in open raceway ponds for cultivation of microalgae

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

For efficient storage and utilization of CO2 in open raceway ponds, the effects of cultural and operational parameters were studied. A 10 m2 indoors raceway pond was operated to determine CO2 storage capacity, average rate of absorbed CO2 losses and mass transfer coefficient for CO2 outgassing from various pH, salinity and alkalinity regimes of culture medium; mixing velocities and culture depths. Average rate of CO2 outgassing for saltwater (35 ppt salinity) at 40 meq/L alkalinity was 40-fold higher than seawater (35 ppt salinity and 2.3 meq/L alkalinity) at pH 8. Operating at lower pHs or salinities aggravated CO2 outgassing. An empirical equation for CO2 outgassing average mass transfer coefficient, \(\bar K_L \), was developed as a function of mixing velocity and depth. Nannochloropsis sp. PTCC6016 was cultivated in the pond for 14 days. Due to higher amount of outgassing, CO2 utilization efficiency declined as the productivity in the pond decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Chisti, Biotechnol. Adv., 25, 294 (2007).

    Article  CAS  Google Scholar 

  2. C.Y. Chen, K. L. Yeh, A. Aisah, D. J. Lee and J. S. Chang, Biorecour. Technol., 102, 71 (2011).

    Article  CAS  Google Scholar 

  3. R. Harun, M. Singh, G. Forde and M. Danquah, Sust. Energy Rev., 14, 1037 (2010).

    Article  CAS  Google Scholar 

  4. J. Sheehan, T. Dunahay, J. Benemann and P. Roessler, A look back at the U.S. department of energy’s aquatic species program — biodiesel from algae, National Renewable Energy Laboratory, USA, NREL/TP-580-24190 (1988).

    Google Scholar 

  5. A. Demirbas, Energy Convers. Manage., 51, 2738 (2010).

    Article  CAS  Google Scholar 

  6. E.W. Becker, Microalgae: Biotechnology and microbiology, Cambridge University Press, Cambridge (1994).

    Google Scholar 

  7. F. Camacho Rubio, F.G. Acién Fernández, J. A. Sánchez Pérez, F. García Camacho and E. Molina Grima, Biotechnol. Bioeng., 62, 71 (1999).

    Article  Google Scholar 

  8. J. R. Benemann, D. M. Tillett and J. C. Weissman, Trends Biotechnol., 5, 47 (1987).

    Article  CAS  Google Scholar 

  9. J. C. Weissman, D. M. Tillet and R. P. Goebel, Design and operation of an outdoor microalgae test facility, Solar Energy Research Institute, USA, SERI/STR-232-3569 (1987).

    Google Scholar 

  10. A. Richmond, CRC handbook of microalgal mass culture, CRC Press, USA (1986).

    Google Scholar 

  11. R. Smutek, V. Benes and F. Dittrt, Algological Studies, 46, 297 (1975).

    Google Scholar 

  12. K. Lívansky, Algological Studies, 71, 111 (1993).

    Google Scholar 

  13. A. Sánchez Mirón, F. García Camacho, A. Contreras Gómez, E. Molina Grima and Y. Chisti AIChE J., 46, 1872 (2000).

    Article  Google Scholar 

  14. K. Lívansky and J. Doucha, Algological Studies, 87, 145 (1997).

    Google Scholar 

  15. R.W. Babcock Jr., J. Malda and J. C. Radway, J. Appl. Phycol., 14, 169 (2002).

    Article  CAS  Google Scholar 

  16. N. Moazami, R. Ranjbar, A. Ashori, M. Tangestani and A. S. Nejad, Biomass Bioenergy, 35, 1935 (2011).

    Article  CAS  Google Scholar 

  17. N. Moazami, R. Ranjbar, A. Ashori, M. Tangestani, R. Eghtesadi and A. S. Nejad, Biomass Bioenergy, 39, 449 (2012).

    Article  CAS  Google Scholar 

  18. R. R. L. Guillard and J. H. Ryther, Can. J. Microbiol., 8, 229 (1962).

    Article  CAS  Google Scholar 

  19. APHA, Standard methods for the examination of water and waste-water, 5th Ed., American Public Health Association (2012).

    Google Scholar 

  20. OECD SIDS, Sodium Bicarbonate, UNEP Publications (2002).

    Google Scholar 

  21. J. C. Weissman, R. P. Goebel and J. R. Benemann, Biotechnol. Bioeng., 3, 336 (1988).

    Article  Google Scholar 

  22. G. L. Bowie, W. B. Mills, D. B. Porcella, C. L. Campbell, J. R. Pagenkopf, G. L. Rupp, K. M. Johnson, P.W. H. Chan, S. A. Gherini and C. E. Chamberlin, Rates, constants, and kinetics formulations in surface water quality modeling (2th Ed.), U.S. Environmental Protection Agency (1985).

    Google Scholar 

  23. A.G. Dickson, C. L. Sabine and J. R. Christian, Guide to best practices for ocean CO 2 measurements, PICES Special Publication (2007).

    Google Scholar 

  24. S. Emerson, Limnol. Oceanogr., 20, 743 (1975).

    Article  CAS  Google Scholar 

  25. K. Livansky and B. Prokes, Biotechnol. Bioeng. Symp., 4, 513 (1973).

    Google Scholar 

  26. E. Molina Grima, J.A. Sánchez Pérez, F. García Camacho and A. Robles Medina, J. Chem. Technol. Biotechnol., 56, 329 (1993).

    Article  CAS  Google Scholar 

  27. Contreras Gómez A., Caracterizacio’n de una columna de burbujeo con recirculacio’n interna. Aplicacio’n al cultivo de Phaeodactylum tricornutum, Ph.D. Thesis, Universidad de Almería, Spain (1996).

    Google Scholar 

  28. A.G. Dickson and F. J. Millero, Deep-Sea Res., 34, 1733 (1987).

    Article  CAS  Google Scholar 

  29. F. J. Millero and R. N. Roy, Croat. Chem. Acta, 70, 1 (1997).

    CAS  Google Scholar 

  30. R. F. Weiss, Mar. Chem., 2, 203 (1974).

    Article  CAS  Google Scholar 

  31. T. M. Sobczuk, F.G. Camacho, F. C. Rubio, F.G. A. Fernandez and E. M. Grima, Biotechnol. Bioeng., 67, 465 (2000).

    Article  CAS  Google Scholar 

  32. J. C. Weissman and R. P. Goebel, Design and analysis of microalgal open pond systems for the purpose of producing fuels, Solar Energy Research Institute, USA, SERI/STR-231-2840 (1987).

    Google Scholar 

  33. A. Rutgersson and A. Smedman, J. Mar. Syst., 80, 125 (2010).

    Article  Google Scholar 

  34. C. D. Jeffery, D. K. Woolf, I. S. Robinsonand and C. J. Donlon, Ocean Modelling, 19, 161 (2007).

    Article  Google Scholar 

  35. S. D. Culberson and R. H. Piedrahita, Ecol. Model., 89, 231 (1996).

    Article  CAS  Google Scholar 

  36. K. Lívansky, M. Kajan and P. Pilarski, Algological Studies, 70, 97 (1993).

    Google Scholar 

  37. J. R. Benemann and D. Tillett, Effects of fluctuating environments on the selection of high yielding microalgae, Solar Energy Research Institute, USA, SERI/SP-231-3071 (1987).

    Book  Google Scholar 

  38. P. Talbot, M. P. Gortares, R.W. Lencki and J. de la Noue, Biotechnol. Bioeng., 37, 834 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Asadollahzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asadollahzadeh, M.J., Ardjmand, M., Seafkordi, A.A. et al. Efficient storage and utilization of CO2 in open raceway ponds for cultivation of microalgae. Korean J. Chem. Eng. 31, 1425–1432 (2014). https://doi.org/10.1007/s11814-014-0059-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0059-6

Keywords

Navigation