Skip to main content

Advertisement

Log in

Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors — a comparative investigation

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We compared the relationship of the behavior and performance of sugarcane baggase and rice straw as supercapacitor electrodes. X-ray diffraction revealed the evolution of crystallites of carbon and silica during activation at higher temperature. The morphology of the carbon samples was determined by SEM. The surface area, pore volume, and pore size distribution of carbon composites were measured. The electrochemical responses were studied by using cyclic voltammetry experiment at 25 °C in a three-electrode configuration. The specific capacitance of the sugarcane bagasse carbon electrodes was in the range 92-340 F/g, whereas for rice straw, it was found to be 56–112 F/g at scan rates of 2-3 mV/s. The sugarcane bagasse carbon exhibited better performance than rice straw carbon using H2SO4 as the electrolyte. However, the results clearly show that lignocellulosic wastes possess a new biomass source of carbonaceous materials for high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Miller and P. Simon, Science, 321, 651 (2008).

    Article  CAS  Google Scholar 

  2. P. Simon and Y. Gogotsi, Nature Materials, 7, 845 (2008).

    Article  CAS  Google Scholar 

  3. A.G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 157, 11 (2006).

    Article  CAS  Google Scholar 

  4. V.N. Vasile Obreja, Physica E: Low. Dimens. Syst. Nanostruct., 40, 2596 (2008).

    Article  CAS  Google Scholar 

  5. J. A. Pessoa, I.M. de Manchilha and S. Sato, J. Ind. Microbio. Biotechnol., 18, 360 (1997).

    Article  CAS  Google Scholar 

  6. P. Robinson, University of California Davis, Personal Communication (2006).

    Google Scholar 

  7. W. T. Tsai, C. Y. Chang and S. L. Lee, Carbon, 35, 1198 (1997).

    Article  CAS  Google Scholar 

  8. G. Yanping and D. A. Rockstraw, Micropor. Mesopor. Mater., 100, 12 (2007).

    Article  Google Scholar 

  9. J. Hayashi, H. Toshihide, T. Isao, M. Katsuhiko and N.A. Fard, Carbon, 40, 2381 (2002).

    Article  CAS  Google Scholar 

  10. W. C. Lim, C. Srinivasakannan and N. Balasubramanian, J. Anal. Appl. Pyrol., 88, 181 (2010).

    Article  CAS  Google Scholar 

  11. T. E. Rufford, D. H. Jurcakova, K. Khosla, Z. Zhu and L. Gao, J. Power Sources, 195, 912 (2010).

    Article  CAS  Google Scholar 

  12. H. Chun-Hisen and A. D. Ruey, Micropor. Mesopor. Mater., 147, 47 (2012).

    Article  Google Scholar 

  13. F. Zhang, K. X. Wang, G. D. Li and J. S. Chen, Electrochem. Commun., 11, 130 (2009).

    Article  CAS  Google Scholar 

  14. I. Salame and J. B. Teresa, J. Ind. Eng. Chem. Res., 39, 301 (2000).

    Article  CAS  Google Scholar 

  15. S. J Gregg and K. S.W. Sing, Adsorption, Surface Area and Porosity, Academic Press, London (1982).

    Google Scholar 

  16. A. C. Pastor, R. Rodriguez, H. Marsh and M. A. Martinez, Carbon, 37, 1275 (1999).

    Article  CAS  Google Scholar 

  17. C. Liao, C. Wu, Y. Yanyongjie and H. Huang, Biomass. Bioenerg., 27, 119 (2004).

    Article  CAS  Google Scholar 

  18. P. J. Van Soest, Anim. Feed. Sci. Technol., 130, 137 (2006).

    Article  Google Scholar 

  19. K. Raveendran, G. Anuraddha, C. Kartick and K. Khilar, Fuel, 74, 1812 (1995).

    Article  CAS  Google Scholar 

  20. N. Yalcin and V. Sevnic, Ceram. Int., 27, 219 (2001).

    Article  CAS  Google Scholar 

  21. H.Y. Chang, H. P. Yun and R. P. Chong, Carbon, 39, 559 (2001).

    Article  Google Scholar 

  22. K. S.W. Sing, Pure. Appl. Chem., 54, 2201 (1982).

    Article  Google Scholar 

  23. Y. Guo, S. Yang and Z. Wang, Mater. Chem. Phys., 74, 320 (2002).

    Article  CAS  Google Scholar 

  24. V. Fierro, G. Muñiz, A.H. Basta, H. El-Saied and A. Celzard, J. Hazard. Mater., 181, 27 (2010).

    Article  CAS  Google Scholar 

  25. Z. Zhu, Y. Hu, H. Jiang and C. Li, J. Power Sources, 246, 402 (2014).

    Article  CAS  Google Scholar 

  26. E. Jeong, M. J. Jung and Y. K. Lee, J. Fluorine Chem., 150, 98 (2013).

    Article  CAS  Google Scholar 

  27. W. T. Tsai, C.Y. Chang, M. C. Lin, S. F. Chien, H. F. Sun and M. F. Hsieh, Chemosphere, 45, 51 (2001).

    Article  CAS  Google Scholar 

  28. T. Adinaveen, L. J. Kennedy, J. J. Vijaya and G. Sekeran, J. Ind. Eng. Chem., 19, 1470 (2013).

    Article  CAS  Google Scholar 

  29. V. Subramanian, C. Luo, A.M. Stephan, K. S. Nahm, S. Thomas and B. Wei, J. Phys. Chem. C, 111, 7527 (2007).

    Article  CAS  Google Scholar 

  30. W. J. Si, X. Z. Wu, W. Xing, J. Zhou and S. P. Zhuo, J. Inorg. Mater., 26, 107 (2011).

    Article  CAS  Google Scholar 

  31. X. Z. Wu, J. Zhou, W. Xing and S. P. Zhuo, J. North Uni. China, 33, 179 (2012).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Kennedy Lourdusamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thambidurai, A., Lourdusamy, J.K., John, J.V. et al. Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors — a comparative investigation. Korean J. Chem. Eng. 31, 268–275 (2014). https://doi.org/10.1007/s11814-013-0228-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0228-z

Keywords

Navigation