Skip to main content
Log in

Gas holdup in tapered bubble column using pseudoplastic non-Newtonian liquids

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Experimental studies on the gas holdup in two tapered bubble columns using non-Newtonian pseudoplastic liquid have been reported. The effects of different variables such as gas flow rate, liquid viscosity, bed height, and orifice diameter of sieve plate on gas holdup have been investigated. An empirical correlation has been developed for the prediction of the gas holdup as a function of various measurable parameters of the system. The correlation is statistically acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Joshi, Chem. Eng. Sci., 56, 5893 (2001).

    Article  CAS  Google Scholar 

  2. B. N. Thorat, K. Kataria, A.V. Kulkarni and J. B. Joshi, Ind. Eng. Chem. Res., 40, 3675 (2001).

    Article  CAS  Google Scholar 

  3. A. Mouza, G. K. Dalakoglou and S.V. Paras, Che. Eng. Sci., 60, 1456 (2005).

    Google Scholar 

  4. A. A. Kulkarni and J. B. Joshi, Ind. Eng. Chem. Res., 44, 5873 (2005).

    Article  CAS  Google Scholar 

  5. W. D. Deckwer, Int. Chem. Eng., 19, 21 (1979).

    Google Scholar 

  6. N. Kantarci, F. Borak and K. O. Ulgen, Proc. Biochem., 40, 2263 (2005).

    Article  CAS  Google Scholar 

  7. Y. T. Shah, B.G. Kelkar, S. P. Godbole and W. D. Deckwer, AIChE J., 28, 353 (1982).

    Article  CAS  Google Scholar 

  8. D. A. Hines, Proc. 1st Eur. Congr. Biotechn, CH-Interlaken, Sep. 1978, Dechema Monographs, 82, 55, Verlag Chemie, Weinheim (1978).

    Google Scholar 

  9. J. B. Joshi and M. M. Sharma, Trans. Inst. Chem. Engrs., 54, 42 (1976).

    CAS  Google Scholar 

  10. P. Herbrechtsmeier and R. Steiner, Chem. Ing. Technol., 50, 944 (1978).

    Article  CAS  Google Scholar 

  11. K. Schugerl, J. Lucke, I. Lehmann and F. Wagner, Adv. Biochem. Eng., 8, 63 (1978).

    Google Scholar 

  12. G. Kundu, D. Mukherjee and A. K. Mitra, Int. J. Multiphase Flow, 21, 893 (1995).

    Article  CAS  Google Scholar 

  13. A. Mandal, G. Kundu and D. Mukherjee, Chem. Eng. Sci., 59, 3807 (2004).

    Article  CAS  Google Scholar 

  14. C. D. Scott and C.W. Hancher, Biotechnol. Bioeng., 18, 1393 (1976).

    Article  CAS  Google Scholar 

  15. W.W. Pitt, C.W. Hancher and B. D. Patton, Nucl. Chem. Waste Manage., 2, 57 (1981).

    Article  CAS  Google Scholar 

  16. J. S. Huang, J. L. Yan and C. S. Wu, J. Chem. Technol. Biotechnol., 75(4), 269 (2000).

    Article  CAS  Google Scholar 

  17. D. D. Lee, C. D. Scot and C.W. Hancher, J. (Water Pollution Control Federation), 51(5), 974 (1979).

    CAS  Google Scholar 

  18. K. Zhang, Y. Zhao and B. Zhang, Int. J. Chem. Rea. Eng., 1, Note S3 (2003).

  19. S. Sen, Studies on hydrodynamics of tapered bubble column, M. Tech Thesis, University of Calcutta, Kolkata (2003).

    Google Scholar 

  20. P. S. Mandal, B. Basak and S. K. Das, Proc. Int. Conf. Chem. Eng., 29–30 Dec. 2003, Bangladesh, 166 (2003).

    Google Scholar 

  21. J. J. J. Chen, M. Jamialahmadi and S. M. Li, Chem. Eng. Res. Deg., 67, 203 (1989).

    CAS  Google Scholar 

  22. D. C. Sau, S. Mohanty and K. C. Biswal, Chem. Eng. J., 132(1–3), 151 (2007).

    Article  CAS  Google Scholar 

  23. T. M. Gernon, M. A. Gilbertson and R. S. J. Sparks, Particle segregation in tapered fluidized beds, 13th Int. Conf Fluidization — New Paradigm in Fluidization Engineering, Available at http://dc.engconfintl.org/fluidization_xiii/91dt. 10.3.2013.

  24. Y. F. Shi, Y. s. Yu and L. T. Fan, Ind. Engg. Chem. Fundam., 23, 484 (1984).

    Article  CAS  Google Scholar 

  25. T.M. Gernon and M. A. Gilbertson, Powder Technol., 231, 88 (2012).

    Article  CAS  Google Scholar 

  26. R. Parthiban, Songklanakarin J. Sci. Technol., 33(5), 539 (2011).

    CAS  Google Scholar 

  27. D. Chakraborty, M. Guha and P. K. Banerjee, Chem. Eng. Commun., 196(9), 1102 (2009).

    Article  CAS  Google Scholar 

  28. R. P. Chhabra, Bubbles, drops, and particles in non-newtonian fluids, CRC, Taylor & Francis (2007).

    Google Scholar 

  29. R. P. Chhabra, Hydrodynamics of bubbles and drops in rheologically complex fluids, Encyclopedia of Fluid Mechanics 7; Gulf Publishing Co., London, 253 (1988).

    Google Scholar 

  30. S. P. Godbole, M. F. Honath and Y. T. Shah, Chem. Eng. Commun., 16, 199 (1982).

    Article  Google Scholar 

  31. A. Schumpe and W. D. Deckwer, Ind. Eng. Chem. Process. Des. Dev., 21, 706 (1982).

    Article  CAS  Google Scholar 

  32. A. Schumpe and W. D. Deckwer, Bioprocess. Eng., 2, 79 (1987).

    Article  CAS  Google Scholar 

  33. S. K. Chandrakar, Gas dispersion in non-Newtonian liquid-jet ejectors and two phase co-current vertical upflow, PhD Thesis IIT Kharagpur (1985).

    Google Scholar 

  34. M.W. Haque, K. D. P. Nigam and J.B. Joshi, Chem. Eng. Sci., 41, 2321 (1986).

    Article  CAS  Google Scholar 

  35. H. J. Li, Chem. Eng. Sci., 54, 2247 (1999).

    Article  CAS  Google Scholar 

  36. A. Lakota, Acta. Chim. Slov., 54, 678 (2007).

    CAS  Google Scholar 

  37. A. K. Pradhan, R. K. Parichha and P. De, Can. J. Chem. Eng., 71, 468 (1993).

    Article  CAS  Google Scholar 

  38. S. K. Das, M. N. Biswas and A. K. Mitra, Can. J. Chem. Eng., 70, 431 (1992).

    Article  CAS  Google Scholar 

  39. A. Mandal, G. Kundu and D. Mukherjee, Chem. Eng. and Proc., 42, 777 (2003).

    Article  CAS  Google Scholar 

  40. S.K. Chandarkar, S. K. Das and M. N. Biswas, Pressure drop in gas dispersion in non-Newtonian liquid jet ejector system, Int. Conf. Adv. Mechanical and Building Science in the 3rd Millnnium, 14–16 Dec., VIT University, TN (2009).

    Google Scholar 

  41. M.W. Haque, K. D. P. Nigam, K. Viswanathan and J.B. Joshi, Ind. Eng. Chem. Res., 26, 86 (1987).

    Article  Google Scholar 

  42. A. D. Anastasiou, A. D. Passos and A. A. Mouza, Chem. Eng. Sci., 98(19), 331 (2013).

    Article  CAS  Google Scholar 

  43. M. Nishikawa, H. Kato and K. Hashimoto, Ind. Eng. Chem. Process. Des. Dev., 16, 133 (1977).

    Article  CAS  Google Scholar 

  44. H.-J. Henzler, Chem. Ing. Technol., 56, 422 (1984).

    Article  Google Scholar 

  45. D. G. Allen and C.W. Robinson, Biotechnol. Bioeng., 38, 212 (1991).

    Article  CAS  Google Scholar 

  46. Y. Chisti and M. Moo-Young, Biotechnol. Bioeng., 34, 1391 (1989).

    Article  CAS  Google Scholar 

  47. Y. Kawase and T. Kamagai, Bioproc. Eng., 7, 25 (1991).

    CAS  Google Scholar 

  48. W. A. Al-Masry, Biotechnol. Bioeng., 62, 494 (1999).

    Article  CAS  Google Scholar 

  49. O. Hassager, Nature, 279, 402 (1979).

    Article  CAS  Google Scholar 

  50. C. Málaga and J.M. Rallison, J. Non-Newtonian Fluid Mech., 141, 59 (2007).

    Article  CAS  Google Scholar 

  51. E. Fransolet, M. Crine, P. Marchot and D. Toye, Chem. Eng. Sci., 60, 6118 (2005).

    Article  CAS  Google Scholar 

  52. J. R. Vélez-Cordero and R. Zenit, J. Non-Newtonian Fluid Mech., 166, 32 (2011).

    Article  CAS  Google Scholar 

  53. G. Y. Vatai and M. N. Tekic, Chem. Eng. Sci., 42(1), 166 (1987).

    Article  CAS  Google Scholar 

  54. V. Volk, Applied statistics of engineers, McGraw-Hill, New York, 345 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Kumar Jana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jana, S.K., Biswas, A.B. & Das, S.K. Gas holdup in tapered bubble column using pseudoplastic non-Newtonian liquids. Korean J. Chem. Eng. 31, 574–581 (2014). https://doi.org/10.1007/s11814-013-0205-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0205-6

Key words

Navigation