Skip to main content
Log in

Removal of 4-nitro-phenol from wastewater using synthetic zeolite and kaolin clay

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Adsorption techniques are widely used to remove certain classes of pollutants from wastewater. Phenolic compounds represent one of the problematic groups. Na-Y zeolite has been synthesized from locally available Iraqi kaolin clay. Characterization of the prepared zeolite was made by XRD and surface area measurement using N2 adsorption. Both synthetic Na-Y zeolite and kaolin clay have been tested for adsorption of 4-Nitro-phenol in batch mode experiments. Maximum removal efficiencies of 90% and 80% were obtained using the prepared zeolite and kaolin clay, respectively. Kinetics and equilibrium adsorption isotherms were investigated. Investigations showed that both Langmuir and Freundlich isotherms fit the experimental data quite well. On the other hand, the adsorption of phenol was found to obey first-order kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmaruzzaman Md, J. Adv. Col. Inter. Sci., 14348–67 (2008).

    Google Scholar 

  2. V. K. Gupta and I. Ali, Int. J. Environ. Pollut., 38, 4012 (2006).

    Google Scholar 

  3. M. M. Htay and M.M. Oo, World Academy of Science, Engineering and Technology, 48 (2008).

    Google Scholar 

  4. H. Ghobarkar, O. Schaf and U. Guth, Prog. Solid State Chem., 27, 29 (1999).

    Article  CAS  Google Scholar 

  5. Sircar Sh. and A. Myers, Handbook of zeolite science and technology, Chapter 22, Marcel Dekker, Inc. (2003).

    Google Scholar 

  6. D.W. Breck, Zeolites molecular sieves structure chemistry and use, Wiley, New York (1984).

    Google Scholar 

  7. E. Dýaz, S. Ordóñez, A. Veg and J. Coca, J. Chromatography, A 1049, 139 (2004).

    Google Scholar 

  8. S. A. Kozhevnikov, N. N. Motovilova, D. A. Sibarov and M.W. Vinogradov, J. Appl. Chem. (1985), USSR (engl. Transl.); 58: 1412 (Cited in Ahmaruzzaman 2008, Ref #39).

    Google Scholar 

  9. F. Su, L. Lu, H. Tee Meng and X. S. Zhao, Carbon, 43, 1156 (2005).

    Article  CAS  Google Scholar 

  10. J. D. Sherman, National Academy of Science (Colloquium Paper), 96, 3471 (1999).

    Article  CAS  Google Scholar 

  11. N.Y. Chen, W. E. Garwood and F.G. Dwyer, Shape selective catalyst in industrial applications, Dekker, New York, 1 (1989).

    Google Scholar 

  12. R.C. Zielke and T. J. Pinnavaia, Clays and Clay Minerals, 36(5), 403 (1988).

    Article  CAS  Google Scholar 

  13. K. Ma, L. Cui, Y. Dong, T. Wang, C. Da, G. J. Hirasaki and S. L. Biswal, J. Colloid Interface Sci., http://dx.doi.org/10.1016/j.jcis. 2013.07.006 (2013).

    Google Scholar 

  14. R. K. Schofield, J. Soil Sci., 1(1), 1 (1950).

    Article  Google Scholar 

  15. M. D. A. Bolland, A.M. Posner and J. P. Quirk, Clays Clay Miner, 28, 412 (1980).

    Article  CAS  Google Scholar 

  16. J. H. An and S. Dultz, Appl. Clay Sci., 36(4), 256 (2007).

    Article  CAS  Google Scholar 

  17. T. Shichi and K. Takagi, J. Photochem Photobiol C Photochem Rev. 1 (2000).

    Google Scholar 

  18. E.G. Ralph, Clay Mineralogy, 2nd Ed. Int. Series in the Earth and Planetary Sciences (1968).

    Google Scholar 

  19. W. L. Haden and F. J. Metuchen Dzierzanowski, Methods for making synthetic zeolitic material, US Patent, 2,992,068 (1961).

    Google Scholar 

  20. J. K. Mbadcam, S.G. Anagho, N. Nsami and A. M. Kammegne, J. Environ. Chem. Ecotoxicol., 3(11), 290 (2011).

    Google Scholar 

  21. S. Lucas, M. J. Cocero, G. Brunner and C. Zetzl, Fluid Phase Equilib., 219, 171 (2004).

    Article  CAS  Google Scholar 

  22. J. Weber and Walter Jr., Physicochemical Processes Water Quality Control Ed., Wiley (1972).

    Google Scholar 

  23. I.A.W. Tan, A. L. Ahmed and B. H. Hameed, Desalination, 225, 13 (2008).

    Article  CAS  Google Scholar 

  24. Kareem Kh. Ez., Fluid catalytic cracking of petroleum fraction (vacuum gas oil) to produce gasoline, PhD. Thesis University of Baghdad (2010).

    Google Scholar 

  25. W. L. Haden, J. Metuchen, F. J. Dzierzanowski and N. J. Somerset, Method For Making a Faujasite-Type Crystalline Zeolite, US Patent, 3,338,672 (1967).

    Google Scholar 

  26. M.M. J. Treacy and J. B. Higgins, Collection of simulated XRD powder patterns for zeolites, Published on behalf of the Structure Commission of the International Zeolite Association, Fourth Revised Edition, ELSEVIER (2001).

    Google Scholar 

  27. G. E. Christidis and H. Papantoni, The Open Mineralogy Journal, 2, 1–5 1,1874-4567/08. Bentham Science Publishers Ltd. (2008).

    Article  CAS  Google Scholar 

  28. G. P. Jeppu and T. P. Clement, J. Contaminant Hydrol., 129, 46 (2012).

    Article  Google Scholar 

  29. J. H. Potgieter, S. O. Bada and S. S. Potgieter-Vermaak, Water SA, 35(1) (2009).

    Google Scholar 

  30. J. Wu and H. Q. Yu, J. Hazard. Mater. B, 498–508, 137 (2006).

    Google Scholar 

  31. D. Batabyal, A. Sahu and S. K. CHaudhuri, Sep. Technol., 5, 179 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nada Sadoon Ahmedzeki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmedzeki, N.S., Rashid, H.A., Alnaama, A.A. et al. Removal of 4-nitro-phenol from wastewater using synthetic zeolite and kaolin clay. Korean J. Chem. Eng. 30, 2213–2218 (2013). https://doi.org/10.1007/s11814-013-0165-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0165-x

Key words

Navigation