Skip to main content
Log in

Effect of cysteamine layer on the interaction between gold and ZrO 2 surfaces

  • Polymer, Industrial Chemistry, Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The formation of cysteamine layer on gold surfaces may have an effect on the distribution of either gold particle adsorbed to the ZrO2 surface or vice versa with the adjustment of the electrostatic interactions. The atomic force microscope (AFM) was used to measure the surface forces between the zirconia surface and the cysteamine surface s as a function of the salt concentration and pH value. With the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the forces were quantitatively analyzed to acquire the surface potential and charge density of the surfaces for each salt concentration and each pH value. The surface potential and charge density dependence on the salt concentration was described with the law of mass action, and the pH dependence was explained with the ionizable groups on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Soolaman and H.-Z. Yu, J. Phys. Chem. C, 111, 14157 (2007).

    Article  CAS  Google Scholar 

  2. H. Pu, L. Zhang, D. Du, C. Han, H. Li, J. Li and Y. Luo, Korean J. Chem. Eng., 29, 1285 (2012).

    Article  CAS  Google Scholar 

  3. X. Zhang, H. Shi and B.-Q. Xu, J. Catal., 279, 75 (2011).

    Article  CAS  Google Scholar 

  4. C.-M. Wang, K.-N. Fan and Z.-P. Liu, J. Am. Chem. Soc., 129, 2642 (2007).

    Article  CAS  Google Scholar 

  5. S. Arrii, F. Morfin, A. J. Renouprez and J. L. Rousset, J. Am. Chem. Soc., 126, 1199 (2006).

    Article  Google Scholar 

  6. X. Zhang, H. Wang and B. Q. Xu, J. Phys. Chem. B, 109, 9678 (2005).

    Article  CAS  Google Scholar 

  7. P. V. Kamat, J. Phys. Chem. C, 111, 2834 (2007).

    Article  CAS  Google Scholar 

  8. M. Valden, X. Lai and D.W. Goodman, Science, 281, 1647 (1998).

    Article  CAS  Google Scholar 

  9. H. Sakurai, S. Tsubota and M. Haruta, Appl. Catal. A-Gen., 102, 125 (1995).

    Article  Google Scholar 

  10. X. Li, J. Fu, M. Steinhart, D. H. Kim and W. Knoll, Bull. Korean Chem. Soc., 28, 1015 (2008).

    CAS  Google Scholar 

  11. G. Schmid, Chem. Rev., 92, 1709 (1992).

    Article  CAS  Google Scholar 

  12. J. Noh, H. Park, Y. Jeong and S. Kwon, Bull. Korean Chem. Soc., 27, 403 (2006).

    Article  CAS  Google Scholar 

  13. M. Dasog and R.W. J. Scott, Langmuir, 12, 3381 (2007).

    Article  Google Scholar 

  14. N. Sandhyarani and T. Pradeep, Chem. Phys. Lett., 338, 33 (2001).

    Article  CAS  Google Scholar 

  15. N. J. Brewer, R. E. Rawsterne, S. Kothari and G. J. Leggett, J. Am. Chem. Soc., 123, 4089 (2001).

    Article  CAS  Google Scholar 

  16. G. Binnig, C. Quate and G. Gerber, Phys. Rev. Lett., 56, 930 (1986).

    Article  Google Scholar 

  17. B.V. Derjaguin and L. Landau, Acta Physiochem., 14, 633 (1941).

    Google Scholar 

  18. M. Wisniewska, Adsorp. Sci. Technol., 24, 673 (2006).

    Article  CAS  Google Scholar 

  19. E. D. Kafuman, J. Belyea, M. C. Johnson, Z. M. Nicholson, J. L. Ricks, P. K. Shah, M. Bayless, T. Pettersson, Z. Feldoto, E. Blomberg, P. Claesson and S. Franzen, Langmuir, 23, 6053 (2007).

    Article  Google Scholar 

  20. E. A. Sanches, J. C. Soares, R. M. Iost, V. S. Marangoni, G. Trovati, T. Batista, A. C. Mafud, V. Zucolotto and Y. P. Mascarenhas, J. Nanomater., 697071 (2011).

    Google Scholar 

  21. Z. J. Wang, J. H. Yuan, M. Zhou, L. Niu and A. Ivaska, Appl. Surf. Sci., 254, 6289 (2008).

    Article  CAS  Google Scholar 

  22. I.W. Lenggoro, H. M. Lee and K. Okuyama, J. Colloid Interface Sci., 303, 124 (2006).

    Article  CAS  Google Scholar 

  23. W. M. Huang and J.L. Shi, J. Sol-Gel Sci. Technol., 20, 145 (2011).

    Article  Google Scholar 

  24. J. P. Cleveland, S. Manne, D. Bocek and P. K. Hansma, Rev. Sci. Instrum., 64, 403 (1993).

    Article  CAS  Google Scholar 

  25. B. V. Derjaguin, Trans. Faraday Soc., 36, 203 (1941).

    Google Scholar 

  26. J. N. Israelachvili and G. E. Adams, J. Chem. Soc. Faraday Trans., 74, 975 (1978).

    Article  CAS  Google Scholar 

  27. V. E. Shubin and P. Kekicheff, J. Colloid Interface Sci., 155, 108 (1993).

    Article  CAS  Google Scholar 

  28. J. L. Parker and H. K. Christenson, J. Chem. Phys., 88, 8013 (1988).

    Article  CAS  Google Scholar 

  29. S. J. O’Shea, M. E. Welland and J. B. Pethica, Chem. Phys. Lett., 223, 336 (1994).

    Article  Google Scholar 

  30. B. V. Derjaguin, Kolloid Z., 69, 155 (1934).

    Article  Google Scholar 

  31. U. Hartmann, Phys. Rev. B, 43, 2404 (1991).

    Article  Google Scholar 

  32. J. N. Israelachivili, Intermolecular & Surface Forces, Academic Press, New York (1991).

    Google Scholar 

  33. H. Shin, M. Agarwal, M. R. de Guire and A. H. Heuer, Acta Mater., 46, 801 (1998).

    Article  CAS  Google Scholar 

  34. E. J.W. Verwey and J.T.G. Overbeek, Theory of the stability of lyophobic colloids, Elsevier, New York (1948).

    Google Scholar 

  35. R. Hogg, T.W. Healy and D.W. Fuersten, Trans. Faraday Soc., 62, 1638 (1966).

    Article  CAS  Google Scholar 

  36. R. J. Hunter, Foundations of colloid science, Oxford University Press, Oxford, U.K. (1987).

    Google Scholar 

  37. D.Y.C. Chan, R.M. Pashley and L. R. White, J. Colloid Interface Sci., 77, 283 (1980).

    Article  CAS  Google Scholar 

  38. J. L. Parker, Prog. Surf. Sci., 47, 205 (1994).

    Article  CAS  Google Scholar 

  39. J.-W. Park and D. J. Ahn, Colloids Surf. B: Biointerfaces, 62, 157 (2008).

    Article  CAS  Google Scholar 

  40. W. A. Ducker, T. J. Senden and R.M. Pashley, Nature, 353, 239 (1991).

    Article  CAS  Google Scholar 

  41. R.G. Horn, D. T. Smith and W. Haller, Chem. Phys. Lett., 162, 404 (1989).

    Article  CAS  Google Scholar 

  42. J.Y. Choi and D. K. Kim, J. Sol-Gel Sci. Technol., 15, 231 (1999).

    Article  CAS  Google Scholar 

  43. M. Schultz, St. Grimm and W. Burckhardt, Solid State Ionics, 63–35, 18 (1991).

    Google Scholar 

  44. R. M. Pashley, J. Colloid Interface Sci., 83, 531 (1981).

    Article  CAS  Google Scholar 

  45. D. Rahmat, C. Muller, J. Barthelmes, G. Shahnaz, R. Martien and A. Bernkop-Schnurch, Euro. J. Pharm. Biopharm., 83, 149 (2013).

    Article  CAS  Google Scholar 

  46. M.Y. Lee, S. J. Park, K. Park, K. S. Kim, H. Lee and S. K. Hahn, ACS Nano, 5, 6138 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Won Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JW. Effect of cysteamine layer on the interaction between gold and ZrO 2 surfaces. Korean J. Chem. Eng. 30, 1960–1965 (2013). https://doi.org/10.1007/s11814-013-0126-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0126-4

Key words

Navigation