Skip to main content
Log in

Anti-inflammatory effects of silkworm hemolymph on lipopolysaccharide-stimulated macrophages

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Macrophages participate in several inflammatory pathologies such as sepsis and arthritis. We investigated the effect of silkworm hemolymph (SH) on the LPS-induced pro-inflammatory macrophages. SH inhibits LPS-induced nitric oxide (NO) production in RAW 264.7 cells and murine peritoneal macrophages. The decreased NO was reflected as a decreased amount of inducible nitric oxide synthase (iNOS) mRNA and protein. It was also found that SH inhibited pro-inflammatory cytokines, IL-1β, IL-6, and TNF-α production. To elucidate the mechanism by which SH inhibits NO production and iNOS expression, we investigated that SH suppressed IκB phosphorylation, which leads to the activation of NF-κB followed by degradation of IκB. This observation suggests that SH is a potential therapeutic modulator for inflammation-associated disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Janeway, Jr. and R. Medzhitov, Annu. Rev. Immunol., 20, 197 (2002).

    Article  CAS  Google Scholar 

  2. C. R. Raetz and C. Whitfield, Annu. Rev. Biochem., 71, 635 (2002).

    Article  CAS  Google Scholar 

  3. A. Petros, D. Bennett and P. Vallance, Lancet, 338, 1557 (1991).

    Article  CAS  Google Scholar 

  4. J. Cohen, Nature, 420, 885 (2002).

    Article  CAS  Google Scholar 

  5. J. C. ter Steege, M. W. van de Ven, P. P. Forget, P. Brouckaert and W. A. Buurman, Cytokine, 10, 115 (1998).

    Article  Google Scholar 

  6. H. Cheon, S. J. Yu, D. H. Yoo, I. J. Chae, G.G. Song and J. Sohn, Clin. Exp. Immunol., 127, 547 (2002).

    Article  CAS  Google Scholar 

  7. Q. W. Xie, Y. Kashiwabara and C. Nathan, J. Biol. Chem., 269, 4705 (1994).

    CAS  Google Scholar 

  8. W. C. Sha, H.C. Liou, E. I. Tuomanen and D. Baltimore, Cell, 80, 321 (1995).

    Article  CAS  Google Scholar 

  9. S. H. Ha, T. H. Park and S. E. Kim, Biotechnol. Technol., 10, 401 (1996).

    Article  CAS  Google Scholar 

  10. W. J. Rhee, E. J. Kim and T. H. Park, Biotechnol. Prog., 15, 1028 (1999).

    Article  CAS  Google Scholar 

  11. S. H. Ha and T. H. Park, Biotechnol. Lett., 19, 1087 (1997).

    Article  CAS  Google Scholar 

  12. W. J. Rhee and T. H. Park, Biochem. Biophys. Res. Commun., 271, 186 (2002).

    Article  Google Scholar 

  13. S. S. Choi, W. J. Rhee and T. H. Park, Biotechnol. Prog., 18, 874 (2002).

    Article  CAS  Google Scholar 

  14. W. J. Rhee, E. J. Kim and T.H. Park, Biophys. Res. Commun., 295, 779 (2002).

    Article  CAS  Google Scholar 

  15. E. J. Kim, W. J. Rhee and T. H. Park, Biochem. Biophys. Res. Commun., 285, 224 (2001).

    Article  CAS  Google Scholar 

  16. E. J. Kim, W. J. Rhee and T. H. Park, Biotechnol. Prog., 20, 324 (2004).

    Article  CAS  Google Scholar 

  17. E. J. Kim, H. J. Park and T. H. Park, Biochem. Biophys. Res. Commun., 308, 523 (2003).

    Article  CAS  Google Scholar 

  18. E. J. Kim and T. H. Park, Biotechnol. Bioprocess Eng., 8, 76 (2003).

    Article  CAS  Google Scholar 

  19. S. S. Choi, W. J. Rhee, E. J. Kim and T. H. Park, Biotechnol. Bioeng., 95, 459 (2006).

    Article  CAS  Google Scholar 

  20. Z. Wang, J.H. Park, H. H. Park, W. Tan and T. H. Park, Biotechnol. Bioeng., 108, 1634 (2011).

    Article  CAS  Google Scholar 

  21. J. H. Park, Z. Wang, H.-J. Jeong, H. H. Park, B.-G. Kim, W.-S. Tan, S. S. Choi and T. H. Park, Appl. Microbiol. Biotechnol., 96, 671 (2012).

    Article  CAS  Google Scholar 

  22. C. E. Joosten, T. H. Park and M. L. Shuler, Biotechnol. Bioeng., 83, 695 (2003).

    Article  CAS  Google Scholar 

  23. S. S. Choi, W. J. Rhee and T. H. Park, Biotechnol. Bioeng., 91, 793 (2005).

    Article  CAS  Google Scholar 

  24. W. J. Rhee, E. H. Lee and T. H. Park, Biotechnol. Bioprocess Eng., 14, 645 (2009).

    Article  CAS  Google Scholar 

  25. W. J. Rhee, E.H. Lee, J. H. Park, J. E. Lee and T.H. Park, Biotechnol. Prog., 23, 1441 (2007).

    Article  CAS  Google Scholar 

  26. F. D’Acquisto, M. J. May and S. Ghosh, Mol. Interv., 2, 22 (2002).

    Article  Google Scholar 

  27. H. F. Starnes, Jr., M. K. Pearce, A. Tewari, J. H. Yim, J.C. Zou and J. S. Abrams, J. Immunol., 145, 4185 (1990).

    CAS  Google Scholar 

  28. B. J. Rollins, Mol. Med. Today, 2, 198 (1996).

    Article  CAS  Google Scholar 

  29. L. Van Kaer, Immunol. Cell Biol., 82, 315 (2004).

    Article  Google Scholar 

  30. S. Ghosh, M. J. May and E.B. Kopp, Annu. Rev. Immunol., 16, 225 (1998).

    Article  CAS  Google Scholar 

  31. J. Xaus, M. Comalada, A. F. Valledor, J. Lioberas, F. Lopez-Soriano, J.M. Argiles, C. Bogdan and A. Celada, Blood, 15, 3823 (2000).

    Google Scholar 

  32. N. Koizumi, A. Morozumi, M. Imamura, E. Tanaka, H. Iwahana and R. Sato, Eur. J. Biochem., 248, 217 (1997).

    Article  CAS  Google Scholar 

  33. N. Koizumi, M. Imamura, T. Kadotani, K. Yaoi, H. Iwahana and R. Sato, FEBS Lett., 443, 139 (1999).

    Article  CAS  Google Scholar 

  34. M. Kamimura, Y. Nakahara, Y. Kanamori, S. Tsuzuki, Y. Hayakawa and M. Kiuchi, Biochem. Biophys. Res. Commun., 286, 67 (2001).

    Article  CAS  Google Scholar 

  35. K. Ishii, H. Hamamoto, M. Kamimura, Y. Nakamura, H. Noda, K. Imamura, K. Mita and K. Sekimizu, J. Biol. Chem., 285, 28635 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai Hyun Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, MR., Lee, W.H., Rhee, W.J. et al. Anti-inflammatory effects of silkworm hemolymph on lipopolysaccharide-stimulated macrophages. Korean J. Chem. Eng. 30, 1784–1789 (2013). https://doi.org/10.1007/s11814-013-0108-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0108-6

Key words

Navigation