Skip to main content
Log in

Fucoidan inhibits lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages and zebrafish larvae

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Fucoidan, a sulfated polysaccharide, is an active component found in various species of seaweed. Although this compound has a strong anti-inflammatory activity, the underlying mechanisms exerted by fucoidan have not been fully elucidated. In the present study, the anti-inflammatory effects of fucoidan on lipopolysaccharide (LPS)-stimulated macrophages and zebrafish larvae were examined. The present data indicated that fucoidan significantly suppressed the secretion of pro-inflammatory mediators including nitric oxide (NO ) and prostaglandin E2 (PGE2), and cytokines, such as tumor necrosis factor-α and interleukin-1β in RAW 264.7 macrophages without any significant cytotoxicity, the protective effects of which were accompanied by a marked reduction in their regulatory gene expression at the transcription levels. Fucoidan also inhibited translocation of the nuclear factor-kappa B from the cytoplasm to the nucleus and attenuated LPS-induced production of intracellular reactive oxygen species (ROS) in RAW 264.7 macrophages. Moreover, fucoidan reduced NO and PGE2 production and ROS accumulation in LPS-stimulated zebrafish larvae, which was associated with a diminished recruitment of neutrophils and macrophages. Based on the results of this study, we suggest that fucoidan has excellent potential as a therapeutic agent for inflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conti, B., Tabarean, I., Andrei, C. & Bartfai, T. Cytokines and fever. Front Biosci 9:1433–1449 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Freire, M. O. & Van Dyke, T. E. Natural resolution of inflammation. Periodontol 2000 63:149–164 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Amin, A. R., Attur, M. & Abramson, S. B. Nitric oxide synthase and cyclooxygenases: distribution, regulation, and intervention in arthritis. Curr Opin Rheumatol 11: 202–209 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Cunha, T. M. et al. Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J Leukoc Biol 83:824–832 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Williams, M. R., Azcutia, V., Newton, G., Alcaide, P. & Luscinskas, F. W. Emerging mechanisms of neutrophil recruitment across endothelium. Trends Immunol 32:461–469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, L. & Wang, C. C. Inflammatory response of macrophages in infection. Hepatobiliary Pancreat Dis Int 13:138–152 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Muralidharan, S. & Mandrekar, P. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol 94:1167–1184 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Czura, C. J., Friedman, S. G. & Tracey, K. J. Neural inhibition of inflammation: the cholinergic anti-inflammatory pathway. J Endotoxin Res 9:409–413 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. McDaniel, M. L., Kwon, G., Hill, J. R., Marshall, C. A. & Corbett, J. A. Cytokines and nitric oxide in islet inflammation and diabetes. Proc Soc Exp Biol Med 211:24–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Brüne, B. et al. Redox control of inflammation in macrophages. Antioxid Redox Signal 19:595–637 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mills, E. L. & O’Neill, L. A. Reprogramming mitochondrial metabolism in macrophages as an anti-in flammatory signal. Eur J Immunol 46:13–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Varga, A. et al. Ragweed pollen extract intensifies lipopolysaccharide-induced priming of NLRP3 inflammasome in human macrophages. Immunology 138:392–401 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haddad, J. J. & Land, S. C. Redox signaling-mediated regulation of lipopolysaccharide-induced proinflammatory cytokine biosynthesis in alveolar epithelial cells. Antioxid Redox Signal 4:179–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Abuajah, C. I., Ogbonna, A. C. & Osuji, C. M. Functional components and medicinal properties of food: a review. J Food Sci Technol 52:2522–2529 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Bocanegra, A., Bastida, S., Benedí, J., Ródenas, S. & Sánchez-Muniz, F. J. Characteristics and nutritional and cardiovascular-health properties of seaweeds. J Med Food 12:236–258 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Cardoso, M. J., Costa, R. R. & Mano, J. F. Marine origin polysaccharides in drug delivery dystems. Mar Drugs 14:pii: E34 (2016).

    Article  PubMed  Google Scholar 

  17. de Jesus Raposo, M. F., de Morais, A. M. & de Morais, R. M. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs 13:2967–3028 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Park, H. Y. et al. Anti-inflammatory effects of fucoidan through inhibition of NF-kB, MAPK and Akt activation in lipopolysaccharide-induced BV2 microglia cells. Food Chem Toxicol 49:1745–1752 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Park, H. S. et al. Induction of apoptosis by fucoidan in human leukemia U937 cells through activation of p38 MAPK and modulation of Bcl-2 family. Mar Drugs 11:2347–2364 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Park, H. Y. et al. Fucoidan inhibits the proliferation of human urinary bladder cancer T24 cells by blocking cell cycle progression and inducing apoptosis. Molecules 19:5981–5998 (2014).

    Article  PubMed  Google Scholar 

  21. Senthilkumar, K. & Kim, S. K. Anticancer effects of fucoidan. Adv Food Nutr Res 72:195–213 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, P. et al. 2014. Anti-metastasis effect of fucoidan from Undaria pinnatifida sporophylls in mouse hepatocarcinoma Hca-F cells. PLoS One 9:e106071 (2014).

    PubMed  Google Scholar 

  23. Fitton, J. H., Stringer, D. N. & Karpiniec, S. S. Therapies from fucoidan: An update. Mar Drugs 13:5920–5946 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang, T. H. et al. Prophylactic administration of fucoidan represses cancer metastasis by inhibiting vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in Lewis tumor-bearing mice. Mar Drugs 13:1882–1900 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, B. S., Kang, H. J., Park, J. Y. & Lee, J. Fucoidan promotes osteoblast differentiation via JNK-and ERK-dependent BMP2-Smad 1/5/8 signaling in human mesenchymal stem cells. Exp Mol Med 47:e128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seok, J. et al. Efficacy of Cistanche tubulosa and Laminaria japonica extracts (MK-R7) supplement in preventing patterned hair loss and promoting scalp health. Clin Nutr Res 4:124–131 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen, Y. M. et al. Fucoidan supplementation improves exercise performance and exhibits anti-fatigue action in mice. Nutrients 7:239–252 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lee, S. H. et al. Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model. Carbohydr Polym 92:84–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, E. A. et al. Protective effect of fucoidan against AAPH-induced oxidative stress in zebrafish model. Carbohydr Polym 102:185–191 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Li, Q. & Verma, I. M. NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Lu, Y. C. et al. Chondroprotective role of sesamol by inhibiting MMPs expression via retaining NF-kB signaling in activated SW1353 cells. J Agric Food Chem 59:4969–4978 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Rigoglou, S. & Papavassiliou, A. G. The NF-kB signalling pathway in osteoarthritis. Int J Biochem Cell Biol 45:2580–2584 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Mitroulis, I. et al. Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol Ther 147:123–135 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406:782–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ginsburg, I. & Koren E. Are cationic antimicrobial peptides also “double-edged swords”?, Expert Rev Anti Infect Ther 6:453–462 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Yu, H. et al. Scavenger receptor A (SR-A) is required for LPS-induced TLR4 mediated NF-kB activation in macrophages. Biochim Biophys Acta 1823:1192–1198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kauppinen, A., Suuronen, T., Ojala, J., Kaarniranta, K. & Salminen, A. Antagonistic crosstalk between NF-kB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 25:1939–1948 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Tan, H. Y. et al. The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases. Oxid Med Cell Longev 2016:2795090 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. Dibbert, B. et al. Cytokine-mediated Bax deficiency and consequent delayed neutrophil apoptosis: a general mechanism to accumulate effector cells in inflammation. Proc Natl Acad Sci USA 96:13330–13335 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sikora, J. P. Immunotherapy in the management of sepsis. Arch Immunol Ther Exp (Warsz) 50:317–324 (2002).

    CAS  Google Scholar 

  42. Matthay, M. A. & Zimmerman, G. A. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol 33:319–327 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schiavuzzo, J. G. et al. Muscle hyperalgesia induced by peripheral P2X3 receptors is modulated by inflammatory mediators. Neuroscience 285:24–33 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Carvalho, A. C. et al. Protective effects of fucoidan, a P-and L-selectin inhibitor, in murine acute pancreatitis. Pancreas 43:82–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Oh, K., Moon, H. G., Lee, D. S. & Yoo, Y. B. Tissue transglutaminase-interleukin-6 axis facilitates perito neal tumor spreading and metastasis of human ovarian cancer cells. Lab Anim Res 31:188–197 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lee, H. et al. Improved Therapeutic profiles of PLA2-free bee venom prepared by ultrafiltration method. Toxicol Res 31:33–40 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, L. et al. Sonchus asper extract inhibits LPS-induced oxidative stress and pro-inflammatory cytokine production in RAW264.7 macrophages. Nutr Res Pract 9:579–585 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Eom, S. A. et al. Protective effects of PEP-1-Catalase on stress-induced cellular toxicity and MPTP-induced Parkinson’s disease. BMB Rep 48:395–400 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wijesinghe, W. A. et al. Aßsessment of anti-inflammatory effect of 5β-hydroxypalisadin B isolated from red seaweed Laurencia snackeyi in zebrafish embryo in vivo model. Environ Toxicol Pharmacol 37:110–117 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, L., Bu, L., Sun, W., Hu, L. & Zhang, S. Functional characterization of mannose-binding lectin in zebrafish: implication for a lectin-dependent complement system in early embryos. Dev Comp Immunol 46:314–322 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Le Guyader, D. et al. Origins and unconventional behavior of neutrophils in developing zebrafish. Blood 111:132–141 (2008).

    Article  PubMed  Google Scholar 

  52. Herbomel, P., Thisse, B. & Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol 238:274–288 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young Hyun Yoo or Yung Hyun Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, JW., Hwang, S.J., Han, M.H. et al. Fucoidan inhibits lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages and zebrafish larvae. Mol. Cell. Toxicol. 13, 405–417 (2017). https://doi.org/10.1007/s13273-017-0045-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-017-0045-2

Keywords

Navigation