Skip to main content
Log in

Performance improvement of direct methanol fuel cells via anodic treatment using various organic acids

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Performance improvement of direct methanol fuel cells (DMFCs) was achieved via an anodic treatment technique. Previously, anodic treatment was performed using sulfuric acid as acidic media, but various organic acids including formic, acetic, oxalic, and citric acids were employed in this study to avoid the use of toxic sulfuric acid. By replacing sulfuric acid to organic acids, a potential damage to catalyst layers and other components such as polymer electrolyte membrane and bipolar plates are expected to be minimized. The anodic treatment was performed by applying 0.7 V (vs. reversible hydrogen electrode) at the anode of DMFCs flowing the organic acid solutions for 30min. After the anodic treatment, peak power densities of DMFCs were increased by +7, +32, +23, and −2.6% when formic, acetic, oxalic, and citric acid solutions were employed, respectively. The enhanced catalytic activity of the DMFCs in the acetic and oxalic acid solutions was confirmed by analyzing electrochemical impedance spectroscopy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Arico, S. Srinivasan and V. Antonucci, Fuel Cells, 1, 133 (2001).

    Article  CAS  Google Scholar 

  2. M. Watanabe and S. Motoo, J. Electroanal. Chem., 60, 267 (1975).

    Article  CAS  Google Scholar 

  3. N. M. Markovic, H. A. Gasteiger and P. N. Ross Jr., Electrochim. Acta, 40, 91 (1995).

    Article  CAS  Google Scholar 

  4. W. Chrzanowski and A. Wieckowski, Langmuir, 14, 1967 (1998).

    Article  CAS  Google Scholar 

  5. M. K. Jeon, J.Y. Won, K. R. Lee and S. I. Woo, Electrochem. Commun., 9, 2163 (2007).

    Article  CAS  Google Scholar 

  6. K. R. Lee, M. K. Jeon and S. I. Woo, Appl. Catal. B: Environ., 91, 428 (2009).

    Article  CAS  Google Scholar 

  7. M. K. Jeon, K. R. Lee, H. Daimon, A. Nakahara and S. I. Woo, Catal. Today, 132, 123 (2008).

    Article  CAS  Google Scholar 

  8. M.K. Jeon, K. R. Lee and S. I. Woo, Korean J. Chem. Eng., 26, 1028 (2009).

    Article  CAS  Google Scholar 

  9. D. K. Kang, C. S. Noh, S. T. Park, J.M. Sohn, S. K. Kim and Y.-K. Park, Korean J. Chem. Eng., 27, 802 (2010).

    Article  CAS  Google Scholar 

  10. J. Cooper and P. J. McGinn, J. Power Sources, 163, 330 (2006).

    Article  CAS  Google Scholar 

  11. M. Umeda, H. Ojima, M. Mohamedi and I. Uchida, J. Power Sources, 136, 10 (2004).

    Article  CAS  Google Scholar 

  12. M. Goetz and H. Wendt, J. Appl. Electrochem., 31, 811 (2001).

    Article  CAS  Google Scholar 

  13. C. Roth, M. Goetz and H. Fuess, J. Appl. Electrochem., 31, 793 (2001).

    Article  CAS  Google Scholar 

  14. J.-H. Choi, K.-W. Park, B.-K. Kwon and Y.-E. Sung, J. Electrochem. Soc., 150, A973 (2003).

    Article  CAS  Google Scholar 

  15. Z.B. Wang, G. P. Yin, P. E. Shi and Y. C. Sun, Electrochem. Solid-State Lett., 9, A13 (2006).

    Article  CAS  Google Scholar 

  16. J. Liu, J. Cao, Q. Huang, X. Li, Z. Zou and H. Yang, J. Power Sources, 175, 159 (2008).

    Article  CAS  Google Scholar 

  17. W. C. Choi, J.D. Kim and S. I. Woo, Catal. Today, 74, 1762 (2002).

    Article  Google Scholar 

  18. Q. Lu, B. Yang, L. Zhuang and J. Lu, J. Phys. Chem. B, 109, 1715 (2005).

    Article  CAS  Google Scholar 

  19. M. K. Jeon, J.Y. Won and S. I. Woo, Electrochem. Solid-State Lett., 10, B23 (2007).

    Article  CAS  Google Scholar 

  20. D. R. Rolison, P. L. Hagans, K. E. Swider and J.W. Long, Langmuir, 15, 774 (1999).

    Article  CAS  Google Scholar 

  21. J.W. Long, R. M. Stroud, K. E. Swider-Lyons and D. R. Rolison, J. Phys. Chem. B, 104, 9772 (2000).

    Article  CAS  Google Scholar 

  22. A.N. Gavrilov, E.R. Savinova, P.A. Simonov, V. I. Zaikovskii, S.V. Cherepanova, G.A. Tsirlina and V.N. Parmon, Phys. Chem. Chem. Phys., 9, 5476 (2007).

    Article  CAS  Google Scholar 

  23. K. Lasch, L. Jörissen, K. A. Friedrich and J. Garche, J. Solid State Electrochem., 7, 619 (2003).

    Article  CAS  Google Scholar 

  24. O. A. Petrii, J. Solid State Electrochem., 12, 609 (2008).

    Article  CAS  Google Scholar 

  25. A. Rose, E. M. Crabb, Y. Qian, M. K. Ravikumar, P. P. Wells, R. J. K. Wiltshire, J. Yao, R. Bilsborrow, F. Mosselmans and A. E. Russell, Electrochim. Acta, 52, 5556 (2007).

    Article  CAS  Google Scholar 

  26. J. S. Spendelow, P. K. Babu and A. Wieckowski, Curr. Opin. Solid State Mater. Sci., 9, 37 (2005).

    Article  CAS  Google Scholar 

  27. M. K. Jeon, J.Y. Won, K. S. Oh, K. R. Lee and S. I. Woo, Electrochim. Acta, 53, 447 (2007).

    Article  CAS  Google Scholar 

  28. J. T. Müller and P.M. Urban,, J. Power Sources, 75, 139 (1998).

    Article  Google Scholar 

  29. X. Yu and P. G. Pickup, J. Power Sources, 182, 124 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Ihl Woo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, M.K., Lee, K.R. & Woo, S.I. Performance improvement of direct methanol fuel cells via anodic treatment using various organic acids. Korean J. Chem. Eng. 30, 1410–1414 (2013). https://doi.org/10.1007/s11814-013-0071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0071-2

Key words

Navigation