Skip to main content
Log in

Effect of drainage channel dimensions on the performance of wave-plate mist eliminators

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We investigated the effects of drainage channel dimensions on droplet removal efficiency and pressure drop of the gas droplet flow in a wave-plate mist eliminator. Droplet dispersion in turbulent gas flows is numerically simulated using eddy interaction model (EIM) and Eulerian-Lagrangian method. Reynolds stress transport model (RSTM) with enhanced wall treatment and shear stress transport (SST) k-ω model are used for simulating the turbulent airflow. Comparison between the numerical simulations and available experimental data shows that eddy lifetime constant (C L ) can affect the results significantly, and by selecting suitable values of the eddy lifetime constant, both turbulence models give reasonable predictions of droplet removal efficiency. Simulations of gas droplet flow in the eliminators with various drainage channel dimensions show that the drainage channel length (L DC ) has a greater effect on droplet removal efficiency than the drainage channel width (W DC ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. Azzopardi and K. S. Sanaullah, Chem. Eng. Sci., 57, 3557 (2002).

    Article  CAS  Google Scholar 

  2. A. Berlemont, P. Desjonqueres and G. Gouesbet, Int. J. Multiphase Flow, 16, 19 (1990).

    Article  CAS  Google Scholar 

  3. E. Brunazzi, S. Ghetti, C. Merello and A. Paglianti, in Proceedings of Convegno Gricu 625 (2004).

    Google Scholar 

  4. A. Burkholz, Droplet separation, VCH Publishers, New York, USA (1989).

    Google Scholar 

  5. D. Burry and G. Bergeles, Int. J. Multiphase Flow, 19, 65 (1993).

    Article  Google Scholar 

  6. S. Calvert, I. L. Jashnani and S. Yung, J. Air Pollution Control Association, 24, 967 (1974).

    Google Scholar 

  7. Ch. Galletti, E. Brunazzi and L. Tognotti, Chem. Eng. Sci., 63, 5639 (2008).

    Article  CAS  Google Scholar 

  8. S. Ghetti, M. Sc. Thesis, University of Pisa, Pisa, Italy (in Italian) (2003).

  9. C. Greenfeld and G. Quarini, ASME fluids engineering division summer meeting, June 22 (1997).

    Google Scholar 

  10. K. Hanjalic and B. E. Launder, J. Fluid Mechnol., 51, 301 (1972).

    Article  Google Scholar 

  11. W. C. Hinds, Aerosol technology: Properties, behavior, and measurement of airborne particles, Wiley, New York (1982).

    Google Scholar 

  12. H.G. Houghton and W. H. Radford, Transactions of the American Institution of Chemical Engineers, 35, 427 (1939).

    CAS  Google Scholar 

  13. P. W. James, Y. Wang, B. J. Azzopardi and J. P. Hughes, Chem. Eng. Res. Des., 81, 639 (2003).

    Article  CAS  Google Scholar 

  14. P. W. James, B. J. Azzopardi, Y. Wang and J. P. Hughes, Chem. Eng. Res. Des., 83, 469 (2005).

    Article  CAS  Google Scholar 

  15. A. I. Jøsang and M. Chr. Melaaen, in 42nd Scandinavian Conference on Simulation and Modeling Porsgrunn, Norway, October 8 (2001).

    Google Scholar 

  16. A. I. Jøsang, Ph.D. Thesis, Dep. of Technol. (HiT-TF), Telemark Univ. Coll., Norway (2002).

  17. K. J. McNulty, J. P. Monat and O.V. Hansen, Chem. Eng. Progress, 83, 48 (1987).

    CAS  Google Scholar 

  18. F. R. Menter, AIAA J., 32, 1598 (1994).

    Article  Google Scholar 

  19. H. Phillips and A. W. Deakin, in 4th Annual Meeting of the Aerosol Society Loughborough, UK (1990).

    Google Scholar 

  20. R. Rafee, H. Rahimzadeh and G. Ahmadi, Chem. Eng. Res. Des., 88, 1393 (2010).

    Article  CAS  Google Scholar 

  21. R. Rafee and H. Rahimzadeh, Iran J. Chem. Chem. Eng., 29, 97 (2010).

    Google Scholar 

  22. M. Sommerfeld, G. Kohnen and M. Ruger, in 9th Symp. Turbulent Shear Flows, Kyoto, Japan, August 16 (1993).

    Google Scholar 

  23. L. Tian and G. Ahmadi, J. Aerosol Sci., 38, 377 (2007).

    Article  CAS  Google Scholar 

  24. C. C. J. Verlaan, Ph.D. Thesis, Delft University of Technology, Delft, the Netherlands (1991).

  25. Y. Wang and G. A. Davies, IChemE Part A: Chem. Eng. Res. Des., 74, 232 (1996).

    CAS  Google Scholar 

  26. Y. Wang and P. W. James, Chem. Eng. Res. Des., 76, 980 (1998).

    Article  CAS  Google Scholar 

  27. Y. Wang and P. W. James, Chem. Eng. Res. Des., 77, 692 (1999).

    Article  CAS  Google Scholar 

  28. D. Wilkinson, IMechE Part E: Proc. Instn. Mech. Eng., 213, 265 (1999).

    Article  Google Scholar 

  29. B. Zamora and A. S. Kaiser, Chem. Eng. Sci., 66, 1232 (2011).

    Article  CAS  Google Scholar 

  30. Q. Zhou and M.A. Leschziner, in 8th Symp. Turbulent Shear Flows, Technical University of Munich, Germany, September (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohollah Rafee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estakhrsar, M.H.H., Rafee, R. Effect of drainage channel dimensions on the performance of wave-plate mist eliminators. Korean J. Chem. Eng. 30, 1301–1311 (2013). https://doi.org/10.1007/s11814-013-0032-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0032-9

Key words

Navigation