Advertisement

Korean Journal of Chemical Engineering

, Volume 30, Issue 6, pp 1301–1311 | Cite as

Effect of drainage channel dimensions on the performance of wave-plate mist eliminators

  • Mohammad Hadi Hamedi Estakhrsar
  • Roohollah RafeeEmail author
Separation Technology, Thermodynamics

Abstract

We investigated the effects of drainage channel dimensions on droplet removal efficiency and pressure drop of the gas droplet flow in a wave-plate mist eliminator. Droplet dispersion in turbulent gas flows is numerically simulated using eddy interaction model (EIM) and Eulerian-Lagrangian method. Reynolds stress transport model (RSTM) with enhanced wall treatment and shear stress transport (SST) k-ω model are used for simulating the turbulent airflow. Comparison between the numerical simulations and available experimental data shows that eddy lifetime constant (C L ) can affect the results significantly, and by selecting suitable values of the eddy lifetime constant, both turbulence models give reasonable predictions of droplet removal efficiency. Simulations of gas droplet flow in the eliminators with various drainage channel dimensions show that the drainage channel length (L DC ) has a greater effect on droplet removal efficiency than the drainage channel width (W DC ).

Key words

Numerical Simulation Wave-plate MistEliminator Drainage Channel Dimensions Removal Efficiency Eddy Lifetime Constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. J. Azzopardi and K. S. Sanaullah, Chem. Eng. Sci., 57, 3557 (2002).CrossRefGoogle Scholar
  2. 2.
    A. Berlemont, P. Desjonqueres and G. Gouesbet, Int. J. Multiphase Flow, 16, 19 (1990).CrossRefGoogle Scholar
  3. 3.
    E. Brunazzi, S. Ghetti, C. Merello and A. Paglianti, in Proceedings of Convegno Gricu 625 (2004).Google Scholar
  4. 4.
    A. Burkholz, Droplet separation, VCH Publishers, New York, USA (1989).Google Scholar
  5. 5.
    D. Burry and G. Bergeles, Int. J. Multiphase Flow, 19, 65 (1993).CrossRefGoogle Scholar
  6. 6.
    S. Calvert, I. L. Jashnani and S. Yung, J. Air Pollution Control Association, 24, 967 (1974).Google Scholar
  7. 7.
    Ch. Galletti, E. Brunazzi and L. Tognotti, Chem. Eng. Sci., 63, 5639 (2008).CrossRefGoogle Scholar
  8. 8.
    S. Ghetti, M. Sc. Thesis, University of Pisa, Pisa, Italy (in Italian) (2003).Google Scholar
  9. 9.
    C. Greenfeld and G. Quarini, ASME fluids engineering division summer meeting, June 22 (1997).Google Scholar
  10. 10.
    K. Hanjalic and B. E. Launder, J. Fluid Mechnol., 51, 301 (1972).CrossRefGoogle Scholar
  11. 11.
    W. C. Hinds, Aerosol technology: Properties, behavior, and measurement of airborne particles, Wiley, New York (1982).Google Scholar
  12. 12.
    H.G. Houghton and W. H. Radford, Transactions of the American Institution of Chemical Engineers, 35, 427 (1939).Google Scholar
  13. 13.
    P. W. James, Y. Wang, B. J. Azzopardi and J. P. Hughes, Chem. Eng. Res. Des., 81, 639 (2003).CrossRefGoogle Scholar
  14. 14.
    P. W. James, B. J. Azzopardi, Y. Wang and J. P. Hughes, Chem. Eng. Res. Des., 83, 469 (2005).CrossRefGoogle Scholar
  15. 15.
    A. I. Jøsang and M. Chr. Melaaen, in 42nd Scandinavian Conference on Simulation and Modeling Porsgrunn, Norway, October 8 (2001).Google Scholar
  16. 16.
    A. I. Jøsang, Ph.D. Thesis, Dep. of Technol. (HiT-TF), Telemark Univ. Coll., Norway (2002).Google Scholar
  17. 17.
    K. J. McNulty, J. P. Monat and O.V. Hansen, Chem. Eng. Progress, 83, 48 (1987).Google Scholar
  18. 18.
    F. R. Menter, AIAA J., 32, 1598 (1994).CrossRefGoogle Scholar
  19. 19.
    H. Phillips and A. W. Deakin, in 4th Annual Meeting of the Aerosol Society Loughborough, UK (1990).Google Scholar
  20. 20.
    R. Rafee, H. Rahimzadeh and G. Ahmadi, Chem. Eng. Res. Des., 88, 1393 (2010).CrossRefGoogle Scholar
  21. 21.
    R. Rafee and H. Rahimzadeh, Iran J. Chem. Chem. Eng., 29, 97 (2010).Google Scholar
  22. 22.
    M. Sommerfeld, G. Kohnen and M. Ruger, in 9th Symp. Turbulent Shear Flows, Kyoto, Japan, August 16 (1993).Google Scholar
  23. 23.
    L. Tian and G. Ahmadi, J. Aerosol Sci., 38, 377 (2007).CrossRefGoogle Scholar
  24. 24.
    C. C. J. Verlaan, Ph.D. Thesis, Delft University of Technology, Delft, the Netherlands (1991).Google Scholar
  25. 25.
    Y. Wang and G. A. Davies, IChemE Part A: Chem. Eng. Res. Des., 74, 232 (1996).Google Scholar
  26. 26.
    Y. Wang and P. W. James, Chem. Eng. Res. Des., 76, 980 (1998).CrossRefGoogle Scholar
  27. 27.
    Y. Wang and P. W. James, Chem. Eng. Res. Des., 77, 692 (1999).CrossRefGoogle Scholar
  28. 28.
    D. Wilkinson, IMechE Part E: Proc. Instn. Mech. Eng., 213, 265 (1999).CrossRefGoogle Scholar
  29. 29.
    B. Zamora and A. S. Kaiser, Chem. Eng. Sci., 66, 1232 (2011).CrossRefGoogle Scholar
  30. 30.
    Q. Zhou and M.A. Leschziner, in 8th Symp. Turbulent Shear Flows, Technical University of Munich, Germany, September (1991).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2013

Authors and Affiliations

  • Mohammad Hadi Hamedi Estakhrsar
    • 1
  • Roohollah Rafee
    • 1
    Email author
  1. 1.Faculty of Mechanical EngineeringSemnan UniversitySemnanIran

Personalised recommendations