Skip to main content
Log in

Structural properties of water around uncharged and charged carbon nanotubes

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Studying the structural properties of water molecules around the carbon nanotubes is very important in a wide variety of carbon nanotubes applications. We studied the number of hydrogen bonds, oxygen and hydrogen density distributions, and water orientation around carbon nanotubes. The water density distribution for all carbon nanotubes was observed to have the same feature. In water-carbon nanotubes interface, a high-density region of water molecules exists around carbon nanotubes. The results reveal that the water orientation around carbon nanotubes is roughly dependent on carbon nanotubes surface charge. The water molecules in close distances to carbon nanotubes were found to make an HOH plane nearly perpendicular to the water-carbon nanotubes interface for carbon nanotubes with negative surface charge. For uncharged carbon nanotubes and carbon nanotubes with positive surface charge, the HOH plane was in tangential orientation with water-carbon nanotubes interface. There was also a significant reduction in hydrogen bond of water region around carbon nanotubes as compared with hydrogen bond in bulk water. This reduction was very obvious for carbon nanotubes with positive surface charge. In addition, the calculation of dynamic properties of water molecules in water-CNT interface revealed that there is a direct relation between the number of Hbonds and selfdiffusion coefficient of water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima and T. Ichihashi, Nature, 363, 603 (1993).

    Article  CAS  Google Scholar 

  2. A. Javey, J. Guo, D. B. Farmer, A. Wang, D. Wang, R.G. Gordon, A. Lundstrom and H. Dai, Nano Lett., 4, 447 (2004).

    Article  CAS  Google Scholar 

  3. L. Dong, X. Tao, L. Zhang, X. Zhang and B. J. Nelson, Nano Lett., 7, 58 (2007).

    Article  CAS  Google Scholar 

  4. L. G. Zhou and S. Q. Shi, Comput. Mater. Sci., 23, 166 (2002).

    Article  CAS  Google Scholar 

  5. Z. Yao, Ch. Zhu, M. Cheng and J. Liu, Comput. Mater. Sci., 22, 180 (2001).

    Article  CAS  Google Scholar 

  6. Ch. Gu, G. H. Gao, Y. X. Yu and Z.Q. Mao, Int. J. Hydrog. Energy, 26, 691 (2001).

    Article  CAS  Google Scholar 

  7. P. A. Gordon and R. B. Saeger, Ind. Eng. Chem. Res., 38, 4647 (1999).

    Article  CAS  Google Scholar 

  8. S.Y. Li, X. H. Zeng, N.Q. Jin, H.Y. Zhang and X. Zhang, Phys. Lett. A, 372, 1303 (2008).

    Article  CAS  Google Scholar 

  9. G. Rao, Ch. Lu and F. Su, Separation and Purification Technology, 58, 224 (2007).

    Article  CAS  Google Scholar 

  10. H. J. Wang, A. L. Zhou, F. Peng, H. Yu and L. F. Chen, Mater. Sci. Eng. A, 466, 201 (2007).

    Article  Google Scholar 

  11. Y.H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu and B. Wei, Chem. Phys. Lett., 357, 263 (2002).

    Article  CAS  Google Scholar 

  12. M. Bahgat, A. A. Farghali, W. M. A. El Rouby and M. H. Khedr, J. Anal. Appl. Pyrol., 92(2), 307 (2011).

    Article  CAS  Google Scholar 

  13. F. Martin, R. Walczak, A. Boiarski, M. Cohen, T. West, C. Cosentino and M. Ferrari, J. Controlled Release, 102, 123 (2005).

    Article  CAS  Google Scholar 

  14. S. Shokri, R. Mohammadikhah, H. Abolghasemi, A. Mohebbi, H. Hashemipour, M. Ahmadi-Marvast and Sh. JafariNejad, Int. J. Chem. Eng. Appl., 1, 63 (2010).

    Google Scholar 

  15. J. H. Walther, R. Jaffe, T. Halicioglu and P. Koumoutsakos, J. Phys. Chem. B, 105, 9980 (2001).

    Article  CAS  Google Scholar 

  16. J. H. Walther, R. Jaffe, E.M. Kotsalis, T. Werder, T. Halicioglu and P. Koumoutsakos, Carbon, 42, 1185 (2004).

    Article  CAS  Google Scholar 

  17. E. Dujardin, T.W. Ebbesen, H. Hiura and K. Tanigaki, Science, 265, 1850 (1994).

    Article  CAS  Google Scholar 

  18. E. Dujardin, T.W. Ebbesen, A. Krishnan and M.M. J. Treacy, J. Adv. Mater., 10(17), 1472 (1998).

    Article  Google Scholar 

  19. A. Stafiej and K. Pyrzynska, Microchem. J., 89, 29 (2008).

    Article  CAS  Google Scholar 

  20. C. Lu and H. Chiu, Chem. Eng. Sci., 61, 1138 (2006).

    Article  CAS  Google Scholar 

  21. H. P. Boehm, Carbon, 40, 145 (2002).

    Article  CAS  Google Scholar 

  22. H. J.C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola and J. R. Haak, J. Chem. Phys., 81, 3684 (1984).

    Article  CAS  Google Scholar 

  23. H. J.C. Berendsen, J. P.M. Postma, W. F. van Gunsteren and J. Hermans, Reidel Dordrecht, 331 (1981).

    Google Scholar 

  24. H. J.C. Berendsen, J.R. Grigera and T. P. Straatsma, J. Phys. Chem., 91, 6269 (1987).

    Article  CAS  Google Scholar 

  25. P. Mark and L. Nilsson, J. Phys. Chem. A., 105, 9954 (2001).

    Article  CAS  Google Scholar 

  26. P. DAngelo, V. Migliorati, G. Mancini and G. Chillemi, J. Phys. Chem. A, 112, 11833 (2008).

    Article  CAS  Google Scholar 

  27. M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Clarendon Press, Oxford, Hardback (1987).

    Google Scholar 

  28. S. Banerjee, A. Murad and I. K. Puri, Chem. Phys. Lett., 434, 292 (2007).

    Article  CAS  Google Scholar 

  29. D. E. Ulberg and K. E. Gubbins, Mol. Phys., 84(6), 1139 (1995).

    Article  CAS  Google Scholar 

  30. J. Marti, J. Chem. Phys., 110, 6876 (1999).

    Article  CAS  Google Scholar 

  31. M. C. Gordillo and J. Marti, Chem. Phys. Lett., 341, 250 (2001).

    Article  CAS  Google Scholar 

  32. J. A. Thomas and A. J.H. McGaughey, J. Chem. Phys., 128, 084715 (2008).

    Article  CAS  Google Scholar 

  33. Q. Z. Yuan and Y. P. Zhao, J. American Chem. Soc., 131, 6374 (2009).

    Article  CAS  Google Scholar 

  34. Y. Quanzi and Y. Zhao, Phys. Rev. Lett., 104, 246101 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mozaffar Ali Mehrabian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dezfoli, A.R.A., Mehrabian, M.A. & Rafsanjani, H.H. Structural properties of water around uncharged and charged carbon nanotubes. Korean J. Chem. Eng. 30, 693–699 (2013). https://doi.org/10.1007/s11814-012-0198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0198-6

Key words

Navigation