Skip to main content
Log in

Modeling interfacial tension of (CH4+N2)+H2O and (N2+CO2)+H2O systems using linear gradient theory

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The linear gradient theory (LGT) of fluid interfaces in combination with the cubic-plus-association equation of state (CPA EOS) is applied to determine the interfacial tensions of (CH4+N2)+H2O and (N2+CO2)+H2O ternary mixtures from 298–373 K and 10–300 bar. First, the pure component influence parameters of CH4, N2, CO2 and H2O are obtained. Then, temperature-dependent expressions of binary interaction coefficient for (CH4+H2O), (N2+H2O) and (CO2+H2O) are correlated. These empirical correlations of pure component influence parameters and binary interaction coefficients are applied for ternary mixtures. For (CH4+N2)+H2O and (N2+CO2)+H2O mixtures, the predictions show good agreement with experimental data (overall AAD∼1.31%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Y. Kim, S. S. Kim and B. Lee, Korean J. Chem. Eng., 26, 349 (2009).

    Article  CAS  Google Scholar 

  2. K. A.G. Schmidt, G.K. Folas and B. Kvamme, Fluid Phase Equilib., 261, 230 (2007).

    Article  CAS  Google Scholar 

  3. W. Yan, G.-Y., Zhao, G.-J. Chen and T. M. Guo, J. Chem. Eng. Data, 46, 1544 (2001).

    Article  CAS  Google Scholar 

  4. H. Luo, C.Y. Sun, Q. Huang, B. Z. Peng and G. J. Chen, J. Colloid and Interface Sci., 297, 266 (2006).

    Article  CAS  Google Scholar 

  5. D. B. Macleod, Trans. Faraday Soc., 19, 38 (1923).

    Article  Google Scholar 

  6. S. Sugden, J. Chem. Soc. Trans., 125, 32 (1924).

    Article  CAS  Google Scholar 

  7. S. Sugden, J. Chem. Soc. Trans., 125, 1177 (1924).

    Article  CAS  Google Scholar 

  8. C. F. Weinaug and D. L. Katz, Ind. Eng. Chem., 35, 239 (1943).

    Article  CAS  Google Scholar 

  9. E. A. Guggenheim, J. Chem. Phys., 13, 253 (1945).

    Article  CAS  Google Scholar 

  10. Y. X. Zuo and E. H. Stenby, Can. J. Chem. Eng., 75, 1130 (1997).

    Article  CAS  Google Scholar 

  11. A. J. Queimada, L. I. Rolo, A. I. Caco, I.M. Marrucho, E. H. Stenby and J. A. P. Coutinho, Fuel, 85, 874 (2006).

    Article  CAS  Google Scholar 

  12. A. J. Queimada, A. I. Caco, I.M. Marrucho and J.A. P. Coutinho, J. Chem. Eng. Data, 50, 1043 (2005).

    Article  CAS  Google Scholar 

  13. S. Toxvaerd, J. Chem. Phys., 57, 4092 (1972).

    Article  CAS  Google Scholar 

  14. J. M. Haile, C.G. Gray and K. E. Gubbins, J. Chem. Phys., 64, 2569 (1976).

    Article  CAS  Google Scholar 

  15. P. I. Teixeira and M. M. Telo da Gama, J. Phys. Condens. Matter., 3, 111 (1991).

    Article  CAS  Google Scholar 

  16. J. Winkelmann, Ber. Bunsenges, Phys. Chem., 98, 1308 (1994).

    Article  CAS  Google Scholar 

  17. J. Winkelmann, U. Brodrecht and I. Kreft, Ber. Bunsenges. Phys. Chem., 98, 912 (1994).

    Article  CAS  Google Scholar 

  18. D. Fu, J. F. Lu, J. C. Liu and Y. G. Li, Chem. Eng. Sci., 56, 6989 (2001).

    Article  CAS  Google Scholar 

  19. R. Evans, Adv. Phys., 28, 143 (1979).

    Article  CAS  Google Scholar 

  20. J. S. Rowlinson, J. Stat. Phys., 20, 197 (1979).

    Article  Google Scholar 

  21. J.W. Cahn and J. E. Hilliard, J. Chem. Phys., 28, 258 (1958).

    Article  CAS  Google Scholar 

  22. Y.-X. Zuo and E.H. Stenby, Fluid Phase Equilib., 132, 139 (1997).

    Article  CAS  Google Scholar 

  23. H. T. Davis and L. E. Stress, Adv. Chem. Phys., 49, 357 (1982).

    Article  CAS  Google Scholar 

  24. B. S. Carey, L. E. Scriven and H. T. Davis, Am. Inst. Chem. Eng. J., 24, 1076 (1978).

    Article  CAS  Google Scholar 

  25. H. T. Davis and L. E. Scriven, Adv. Chem. Phys., 49, 357 (1982).

    Article  CAS  Google Scholar 

  26. M. I. Guerrero, H. T. Davis, Ind. Eng. Chem. Fundam., 19, 309 (1980).

    Article  CAS  Google Scholar 

  27. H. Kahl and S. Enders, Fluid Phase Equilib., 172, 27 (2000).

    Article  CAS  Google Scholar 

  28. C. I. Poser and I.C. Sanchez, J. Colloid Interface Sci., 69, 539 (1979).

    Article  CAS  Google Scholar 

  29. G. T. Dee and B. B. Sauer, J. Colloid Interface Sci., 152, 85 (1992).

    Article  CAS  Google Scholar 

  30. B. B. Sauer and G. T. Dee, J. Colloid Interface Sci., 162, 25 (1994).

    Article  CAS  Google Scholar 

  31. H. S. Lee and W. H. Jo, Polymer., 39, 2489 (1998).

    Article  CAS  Google Scholar 

  32. S. Fisk and B. Widom, J. Chem. Phys., 50, 3219 (1969).

    Article  CAS  Google Scholar 

  33. A. J.M. Yang, P. D. Fleming III and J. H. Gibbs, J. Chem. Phys., 64, 3732 (1976).

    Article  CAS  Google Scholar 

  34. S. Fisk and B. Widom, J. Chem. Phys., 50, 3219 (1969).

    Article  CAS  Google Scholar 

  35. P. M.W. Cornelisse, C. J. Peters and J. De Swann Arons, Fluid Phase Equilib., 117, 312 (1996).

    Article  CAS  Google Scholar 

  36. S. Enders and K. Quitzsch, Langmuir, 14, 4606 (1998).

    Article  CAS  Google Scholar 

  37. H. Lin, Y.-Y. Duan and Q. Min, Fluid Phase Equilib., 254, 75 (2007).

    Article  CAS  Google Scholar 

  38. B. S. Carey, L. E. Scriven and H. T. Davis, AIChE J., 26, 705 (1980).

    Article  CAS  Google Scholar 

  39. T. Lafitte, B. Mendiboure, M.M. Pineiro, D. Bessières and C. Miqueu, J. Phys. Chem. B., 114, 11110 (2010).

    Article  CAS  Google Scholar 

  40. A. Mejıa, I. Polishuk, H. Segura and J. Wisniak, Thermochim. Acta, 411, 171 (2001).

    Article  Google Scholar 

  41. A. Mejıa, H. Segura, L. F. Vega and J. Wisniak, Fluid Phase Equilib., 227, 225 (2005).

    Article  Google Scholar 

  42. C. Miqueu, J.M. Migues, M. M. Pineiro, T. Lafitte and B. Mendiboure, J. Phys. Chem. B., 115, 9618 (2011).

    Article  CAS  Google Scholar 

  43. M. Sahimi and B. N. Taylor, J. Chem. Phys., 95, 6749 (1991).

    Article  CAS  Google Scholar 

  44. C. Miqueu, B. Mendiboure, C. Graciaa and J. Lachaise, Fluid Phase Equilib., 218, 189 (2004).

    Article  CAS  Google Scholar 

  45. V. Bongiorno, L. E. Scriven and H. T. Davis, J. Colloid Interface Sci., 57, 462 (1976).

    Article  CAS  Google Scholar 

  46. Y. X. Zuo and E. H. Stenby, In Situ., 22, 157 (1998).

    CAS  Google Scholar 

  47. Y. X. Zuo and E. H. Stenby, J. Colloid Interface Sci., 182, 126 (1996).

    Article  CAS  Google Scholar 

  48. M.B. Oliveira, I.M. Marrucho, J. A. P. Coutinho and A. J. Queimada, Fluid Phase Equilib., 267, 83 (2008).

    Article  CAS  Google Scholar 

  49. G. M. Kontogeorgis, I.V. Yakoumis, H. Meijer, E. Hendriks and T. Moorwood, Fluid Phase Equilib., 160, 201 (1999).

    Article  Google Scholar 

  50. H. Haghighi, Phase equilibria modelling of petroleum reservoir fluids containing water, Hydrate Inhibitors and Electrolyte Solutions, Ph.D. Thesis, University of Heriot-Watt, Institute of Petroleum Engineering (2009).

  51. V.G. Baidakov, K.V. Khvostov and G. N. Muratov, Zh. Fiz. Khim., 56, 814 (1982).

    CAS  Google Scholar 

  52. Q.-Y. Ren, G.-J. Chen, W. Yan and T.-M. Guo, J. Chem. Eng. Data, 45, 610 (2000).

    Article  CAS  Google Scholar 

  53. W. Yan, G.-Y. Zhao, G.-J. Chen and T.M. Guo, J. Chem. Eng. Data, 46, 1544 (2001).

    Article  CAS  Google Scholar 

  54. A. Georgiadis, G. Maitland, J. P.M. Trusler and A. Bismarck, J. Chem. Eng. Data, 55, 4168 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Varaminian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khosharay, S., Varaminian, F. Modeling interfacial tension of (CH4+N2)+H2O and (N2+CO2)+H2O systems using linear gradient theory. Korean J. Chem. Eng. 30, 724–732 (2013). https://doi.org/10.1007/s11814-012-0187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0187-9

Key words

Navigation