Skip to main content
Log in

Microbial desulfurization of three different coals from Indonesia, China and Korea in varying growth medium

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Shake flask studies on microbial desulfurization of three different coal samples (Indonesian lignite, Chinese lignite and Korean anthracite) were performed to optimize the best suitable growth medium. Among the three different growth mediums (basal salt medium, basal salt medium supplemented with 9 g/L Fe and basal salt medium supplemented with 2.5% S0) tested, the basal salt medium was found to be the best, considering process dynamics and economical factors. The extent of pyrite oxidation was highest with 95% in the experiments with Korean anthracite in basal salt medium supplemented with 9 g/L Fe, while the lowest pyrite oxidation of 70–71% was observed in the experiments with Indonesian and Chinese Lignite’s in only basal salt medium. The microbial sulfur removal in the experiments with basal salt medium supplemented with 9 g/L Fe for all the three coal samples was between 94–97%, while the experiments on basal salt medium supplemented with 2.5% S0 for all the coal samples were relatively much lower ranging between 27–48%. However, the overall study resulted with promising directions for further scaling up of microbial desulphurization in a best growth medium devoid of iron and sulfur supplement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Andrews and J. Maczuga, in Proceedings of Fourth Symposium for Biotechnology in Energy Production and Conservation, Gatlinburg, TN, 26 (1982).

  2. D.G. Lundgren and M. Silver, Annu. Rev. Microbiol., 34, 263 (1980).

    Article  CAS  Google Scholar 

  3. H. M. Lizama and I. Suzuki, Biotechnol. Bioeng., 32, 110 (1987).

    Article  Google Scholar 

  4. F. Kargi and J. M. Robinson, Biotechnol. Bioeng., 27, 41 (1985).

    Article  CAS  Google Scholar 

  5. C. Blackmore, B. Blakemore and C. Davies, Res. Environ. Biotechnol., 1, 81 (1995).

    CAS  Google Scholar 

  6. F. Kargi and J. M. Robinson, Appl. Environ. Microbiol., 44, 878 (1982).

    CAS  Google Scholar 

  7. C. Acharya, R. N. Kar and L. B. Sukla Fuel, 80, 2207 (2001).

    Article  CAS  Google Scholar 

  8. J. Hu, B. Zheng, R. B. Finkelman, B. Wang, M. Wang, S. Li and D. Wu, Fuel, 85, 679 (2006).

    Article  CAS  Google Scholar 

  9. G. Rossi, Fuel, 72, 1581 (1993).

    Article  CAS  Google Scholar 

  10. E. Beier, Res. Conserv. Rec., 1, 233 (1988).

    Article  CAS  Google Scholar 

  11. A. Morán, A. Aller, J. Cara, O. Martínez, J. P. Encinas and E. Gómez, Fuel Process. Technol., 52, 155 (1997).

    Article  Google Scholar 

  12. M. J. Fabia ska, L. Lewińska-Preis, R. Galimska-stypa, Fuel, 82, 165 (2003).

    Article  Google Scholar 

  13. E. Jorjani, S. C. Chelgani and Sh. Mesroghli, Miner. Eng., 20, 1285 (2007).

    Article  CAS  Google Scholar 

  14. T. L. Peeples and R.M. Kelly, Fuel, 72, 1619 (1993).

    Article  CAS  Google Scholar 

  15. S. S. Tripathy, R. N. Kar, S. K. Mishra, I. Twardowsk and L.B. Sukla, Fuel, 77, 859 (1998).

    Article  CAS  Google Scholar 

  16. B.G. Kim, S. K. Choi, H. S. Chung, J. J. Lee and F. Saito, Powder Technol., 126, 22 (2002).

    Article  CAS  Google Scholar 

  17. M. J. Mankosa, G. T. Adel and R. H. Yoon, Powder Technol., 49, 75 (1986).

    Article  CAS  Google Scholar 

  18. M. P. Silverman and D.G. Lundgren, J. Bacteriol., 77, 642 (1959).

    CAS  Google Scholar 

  19. R. Quatrini, C. Appia-Ayme, Y. Denis, E. Jedlicki, D. S. Holmes and V. Bonnefoy, BMC Genomics., 10, 394 (2009).

    Article  Google Scholar 

  20. J.M. Kolthoff and B. Sandell, Text book of quantitative inorganic chemistry, Macmillan Publishing Co., New York (1963).

    Google Scholar 

  21. C. S. Gahan, M. L. Cunha and Å. Sandström, Hydrometallurgy, 95, 190 (2009).

    Article  CAS  Google Scholar 

  22. D.P. Kelly, Phil. Trans. R. Soc. London B 13, 298, 499 (1982).

    Article  CAS  Google Scholar 

  23. W. Hazeu, W. H. Batenburg-van der Vegte, P. Bos, R. K. van der Pas and J. G. Kuenen, Arch. Microbiol., 150, 574 (1988).

    Article  CAS  Google Scholar 

  24. M. Fortuny, A. Guisasola, C. Casas, X. Gamisans, J. Lafuente and D. Gabriel, J. Chem. Technol. Biot., 85, 378 (2010).

    Article  CAS  Google Scholar 

  25. C. S. Gahan, J. E. Sundkvist and Å. Sandström, Miner. Eng., 23, 731 (2010).

    Article  CAS  Google Scholar 

  26. C. S. Gahan, J. E. Sundkvist, F. Engström and Å. Sandström, Resour. Conserv. Rec., 55, 541 (2011).

    Article  Google Scholar 

  27. K. H. Kim and M. Y. Kim, Atmos. Environ., 36, 663 (2002).

    Article  CAS  Google Scholar 

  28. C. S. Gahan, J. E. Sundkvist and Å. Sandström, J. Hazard. Mater., 172, 1273 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Sekhar Gahan.

Additional information

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DJ., Gahan, C.S., Akilan, C. et al. Microbial desulfurization of three different coals from Indonesia, China and Korea in varying growth medium. Korean J. Chem. Eng. 30, 680–687 (2013). https://doi.org/10.1007/s11814-012-0168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0168-z

Key words

Navigation