Skip to main content
Log in

Analysis and prediction of indoor air pollutants in a subway station using a new key variable selection method

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A new key variable selection and prediction model of IAQ that can select key variables governing indoor air quality (IAQ), such as PM10, CO2, CO, VOCs and formaldehyde, are suggested in this paper. The essential problem of the prediction model is the question of which of the original variables are the most important for predicting IAQ. The next issue is determining the number of key variables that should be ranked. A new index of discriminant importance in the projection (DIP) of Fisher’s linear discriminant (FLD) is suggested for selecting key variables of the prediction models with multiple linear regression (MLR) and partial least squares (PLS), as well as for ranking the importance of input measurement variables on IAQ prediction. The prediction models were applied to a real IAQ dataset from telemonitoring data (TMS) in a metro system. The prediction results of the model using all variables were compared with the results of the model using only key variables of DIP. It shows that the use of our new variable selection method cannot only reduce computational effort, but will also enhance the prediction performances of the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. H. Chiang, E. Russell and R.D. Braatz, Chem. Int. Lab. Syst., 50, 243 (2000).

    Article  CAS  Google Scholar 

  2. R. O. Duda, P. E. Hart and D.G. Stork, Pattern classification, 2nd Ed., John Wiley & Sons, New York (2001).

    Google Scholar 

  3. K. Furuya, Y. Kudo, K. Okinaga, M. Yamukki, S. Takahashi, Y. Araki and Y. Hisamatsu, J. Trace and Microprobe Techniques, 19, 469 (2001).

    Article  CAS  Google Scholar 

  4. T. Hastie, R. Tibshirani and J. Friedman, The elements of statistical learning, Springer, USA (2009).

    Book  Google Scholar 

  5. S.N. Kang, H. J. Hwang, Y.M. Park, H. K. Kim and C. U. Ro, Environ. Sci. Technol., 42, 9051 (2008).

    Article  CAS  Google Scholar 

  6. M. H. Kim, A. S. Rao and C.K. Yoo, Ind. Eng. Chem. Res., 48, 6363 (2009).

    Article  CAS  Google Scholar 

  7. M. J. Kim, M. H. Kim, Y. S. Kim and C. K. Yoo, Multivariate interpretation on the parameter correlation for over-determined system modeling of ASM model, 10th IWA Conference on Instrumentation Control and Automation (2009).

  8. N. J. Kim, S. S. Lee, J. S. Jeon, J. H. Kim and M.Y. Kim, Evaluation of Factors to Affect PM-10 Concentration in Subway Station, Proceedings of Korean Society for Atmospheric Environment, 571 (2006).

  9. Y. S. Kim, J. T. Kim, I.W. Kim, J. C. Kim and C.K. Yoo, Environ. Eng. Sci., 27, 721 (2010).

    Article  CAS  Google Scholar 

  10. Y. S. Kim, M.H. Kim and C. K. Yoo, J. Hazard. Mater., 183, 441 (2010).

    Article  CAS  Google Scholar 

  11. Y. S. Kim, M. J. Kim, J. J. Lim, J. T. Kim and C.K. Yoo, J. Hazard. Mater., 183, 448 (2010).

    Article  CAS  Google Scholar 

  12. J. R. King and D. A. Jackson, Environmetrics, 10, 67 (1999).

    Article  Google Scholar 

  13. T. Kourti, Anal. Bioanal. Chem., 384, 1043 (2006).

    Article  CAS  Google Scholar 

  14. H. K. Kwag, K.W. Jin, W. Kim, W. S. Yang, S. J. Choi and D. U. Park; Kor. J. Env. Hlth., 31, 379 (2005).

    CAS  Google Scholar 

  15. S. S. Liu, H. L. Liu, C. S. Yin and L. S. Wang, J. Chem. Inf. Comput. Sci., 43, 964 (2003).

    Article  CAS  Google Scholar 

  16. J. F. MacGregor, C. Jaeckle, C. Kiparissides and M. Koutoudi, AIChE J., 40, 826 (1994).

    Article  CAS  Google Scholar 

  17. L.G. Murruni, V. Solanes, M. Debray, A. J. Kreiner, J. Davidson and M. Davidson, Atoms. Environ., 43, 4577 (2009).

    Article  CAS  Google Scholar 

  18. M. J. Nieuwenhuijsen, J.E. Gomez-Perales and R. N. Colvile, Atmos. Environ., 41, 7995 (2007).

    Article  CAS  Google Scholar 

  19. A. Paivi, Y. T. Tarja, K. Anu, M. Timo, H. Anne, H. Kaarle, R. I. Mika, H. Risto, K. Tarja and J. Matti, Atmos. Environ., 39, 5059 (2005).

    Article  Google Scholar 

  20. Z. Ramadan, X. H. Song, P. K. Hopke, M. J. Johnson and K.M. Scow, Anal. Chim. Acta, 446, 233 (2001).

    Article  CAS  Google Scholar 

  21. A. M. Rigol, M. Camps, A.D. Juan, G. Rauret and M. Vidal, Environ. Sci. Techonol., 42, 4029 (2008).

    Article  CAS  Google Scholar 

  22. T. Yamamoto, A. Shimameguri, M. Ogawa, I. Hashimoto and V. Kano, Application of Statistical Process Monitoring with External Analysis to an Industrial Monomer Plant, IFAC Symposium on Advanced Control of Chemical Processes, 405 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangKyoo Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, J., Kim, Y., Oh, T. et al. Analysis and prediction of indoor air pollutants in a subway station using a new key variable selection method. Korean J. Chem. Eng. 29, 994–1003 (2012). https://doi.org/10.1007/s11814-011-0278-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0278-z

Key words

Navigation