Skip to main content
Log in

Development of non-precious oxygen reduction reaction catalyst for polymer electrolyte membrane fuel cells based on substituted cobalt porphyrins

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Active and stable cobalt-based non-precious metal catalysts for the oxygen reduction reaction (ORR) in PEM fuel cells were developed through high-temperature pyrolysis of metal-porphyrins supported on carbon. The roles of substituted porphyrins, carbon support, and catalyst loading on ORR activity were studied using rotating disc electrode (RDE) measurements. It was observed that the carbon support plays a major role in improving the catalytic activity. The results showed that among the supported catalysts, the homemade mesocarbon-supported cobalt-porphyrin catalyst with 20 wt% loading displayed higher ORR activity; the cell performance showed maximum current density of 1.1 A cm−2 at 0.13 V in H2/O2 fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Srinivasan, R. Mosdale, P. Stevens and C. Yang, Annu. Rev. Energy Environ., 24, 281 (1999).

    Article  Google Scholar 

  2. A. J. Appleby and F. R. Foulkes, Fuel cell handbook, Van Nostrand Reinhold, New York (1989).

    Google Scholar 

  3. P. N. Ross Jr, in: W. Vielstich, A. Lamm, H. A. Gasteiger (Eds.), Handbook of fuel cells, Vol. 2, Wiley, Newyork, 465 (2003).

    Google Scholar 

  4. E. Antolini, J. R. C. Salgado and E. R. Gonzalez, J. Power Sources, 160, 957 (2006).

    Article  CAS  Google Scholar 

  5. J. H. Kim, S. M. Choi, S. H. Nam, M. H. Seo, S. H. Choi and W. B. Kim, Appl. Catal. B: Environ., 82, 89 (2008).

    Article  CAS  Google Scholar 

  6. C. Jaffray, G. Hards, in: W. Vielstich, A. Lamm, H. A. Gasteiger (Eds.), Handbook of fuel cells, Vol. 3, Wiley, New York, 509 (2003).

    Google Scholar 

  7. B. Wang, J. Power Sources, 152, 1 (2005).

    Article  CAS  Google Scholar 

  8. L. Zhang, J. Zhang, D. P. Wilkinson and H. Wang, J. Power Sources, 156, 171 (2006).

    Article  CAS  Google Scholar 

  9. C.W. B. Bezerra, L. Zhang, K. Lee, H. Liu, A. L. B. Marques, E. P. Marques, H. Wang and J. Zhang, Electrochim. Acta, 53, 4937 (2008).

    Article  CAS  Google Scholar 

  10. R. Bashyam and P. Zelenay, Nature, 443, 63 (2006).

    Article  CAS  Google Scholar 

  11. V. Nallathambi, J.-W. Lee, S. P. Kumaraguru, G. Wu and B. N. Popov, J. Power Sources, 183, 34 (2008).

    Article  CAS  Google Scholar 

  12. A.V. Sankarraj, S. Ramakrishnan and C. Shannon, Langmuir, 24, 632 (2008).

    Article  CAS  Google Scholar 

  13. K. Lee, L. Zhang and J. Zhang, Electrochem. Commun., 9, 1704 (2007).

    Article  CAS  Google Scholar 

  14. S. Pylypenko, S. Mukherjee, T. S. Olson and P. Atanassov, Electrochim. Acta, 53, 7875 (2008).

    Article  CAS  Google Scholar 

  15. K. Wiesener, D. Ohms, V. Neumann and R. Franke, Mater. Chem. Phys., 22, 457 (1989).

    Article  CAS  Google Scholar 

  16. H. Jhanke, M. Schonbron and G. Zimmerman, Top. Curr. Chem., 61, 133 (1976).

    Article  Google Scholar 

  17. G. Faubert, G. Lalande, R. Cote, D. Guay, J. P. Dodelet, L. T. Weng, P. Bertrand and G. Denes, Electrochim. Acta, 41, 1689 (1996).

    Article  CAS  Google Scholar 

  18. M. Bron, S. Fiechter, M. Hilgendorff and P. Bogdannoff, J. Appl. Electrochem., 32, 211 (2002).

    Article  CAS  Google Scholar 

  19. N. A. Savastenko, V. Bruser, M. Bruser, K. Anklam, S. Kutschera, H. Steffen and A. Schumuhl, J. Power Sources, 165, 24 (2007).

    Article  CAS  Google Scholar 

  20. H. Alt, M. Binder and G. Sandstede, J. Catal., 28, 8 (1973).

    Article  CAS  Google Scholar 

  21. D. Ohms, S. Herzog, R, Franke, V. Neumann and K. Wiesener, J. Power Sources, 38, 327 (1992).

    Article  CAS  Google Scholar 

  22. T. Okada, M. Gokita, M. Yuasa and I. Sekine, J. Electrochem. Soc., 145, 815 (1998).

    Article  CAS  Google Scholar 

  23. J. Fournier, G. Lalande, R. Cote, D. Guay and J. P. Dodelet, J. Electrochem. Soc., 144, 218 (1997).

    Article  CAS  Google Scholar 

  24. G. Faubert, R. Cote, J. P. Dodelet, M. Lefevre and P. Bertrand, Electrchim. Acta, 44, 2589 (1999).

    Article  CAS  Google Scholar 

  25. F. Jaouen, F. Charraterour and J. P. Dodelet, J. Electrochem. Soc., 153, A689 (2006).

    Article  CAS  Google Scholar 

  26. A. Widelov and R. Larsson, Electrochim. Acta, 37, 187 (1992).

    Article  Google Scholar 

  27. Y. Kiros, Int. J. Electrochem. Sci., 2, 285 (2007).

    CAS  Google Scholar 

  28. S. Vengatesan, H. J. Kim, S. K. Kim, I. H. Oh, S.Y. Lee, E. A. Cho, H. Y. Ha and T. H. Lim, Electrochim. Acta, 54, 856 (2008).

    Article  CAS  Google Scholar 

  29. G. Lalande, R. Cote, D. Guay, J. P. Dodelet, L. T. Weng and P. Bertand, Electrochim. Acta, 42, 1379 (1997).

    Article  CAS  Google Scholar 

  30. H. Wang, R. Cote, G. Faubert, D. Guay and J. P. Dodelet, J. Phys. Chem. B, 103, 2589 (1999).

    Article  Google Scholar 

  31. M. Bron, J. Radnik, M. F. Erdmann, P. Bogdadoff and S. Fiechter, J. Electroanal. Chem., 535, 113 (2002).

    Article  CAS  Google Scholar 

  32. F. Jaouen, S. Marcotte, J. P. Dodelet and G. Lindbergh, J. Phys. Chem. B, 107, 1376 (2003).

    Article  CAS  Google Scholar 

  33. M. Lefevre, J. P. Dodelet and P. Bertrand, J. Phys. Chem. B, 106, 8705 (2002).

    Article  CAS  Google Scholar 

  34. M. Lefevre and J. P. Dodelet, Electrochim. Acta, 48, 2749 (2003).

    Article  CAS  Google Scholar 

  35. M. Lefevre, J. P. Dodelet and P. Bertrand, J. Phys. Chem. B, 109, 16718 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunae Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vengatesan, S., Cho, E. & Oh, IH. Development of non-precious oxygen reduction reaction catalyst for polymer electrolyte membrane fuel cells based on substituted cobalt porphyrins. Korean J. Chem. Eng. 29, 621–626 (2012). https://doi.org/10.1007/s11814-011-0225-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0225-z

Key words

Navigation