Skip to main content
Log in

Synthesis and assembly of anisotropic nanoparticles

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Unifrom nanoparticles with shape-anisotropy have been synthesized successfully, including rod-like, disk-like (or platelet), or faceted nanoparticles. Recently, innovative methods for funtionalizing their surfaces anisotropically have been devised, which involve site-selective attachment of organic ligands or nanoparticles on particle surface. Those techniques have opened a new way to build up complex nano-architectures by self-assembly. Moreover, recent progress in the synthesis and assembly of anisotropic colloids at micrometer scale has inspired directional self-assembly at nanoscale with anisotropic nanoparticles, which could lead to various nanodevices with better performance. In this review, we discuss synthetic methodology for anisotrpic nanoparticles, including nanorods, nanoplatelet (or nanodisks), faceted nanoparticles and hybrid nanoparticles. Their opitical properties and self-assembled structures are also discusssed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Science, 295, 2425 (2002).

    Article  CAS  Google Scholar 

  2. S. C. Glotzer and M. J. Solomon, Nat. Mater., 6, 557 (2007).

    Article  Google Scholar 

  3. K. J. Lee, J. Yoon and J. Lahann, Curr. Opin. Coll. Interface Sci., 16, 195 (2011)

    Article  CAS  Google Scholar 

  4. S. Mitragotri and J. Lahann, Nat. Mater., 8, 15 (2009)

    Article  CAS  Google Scholar 

  5. Andreas Walther and Axel H. E. Müller, Soft Matter, 4, 663 (2008)

    Article  CAS  Google Scholar 

  6. F. Wurm and A. F. M. Kilbinger, Angew. Chem. Int. Ed., 48, 8412 (2009)

    Article  CAS  Google Scholar 

  7. S.-M. Yang, S.-H. Kim, J.-M. Lim and G.-R. Yi, J. Mater. Chem., 18, 2177 (2008)

    Article  CAS  Google Scholar 

  8. S. Jiang, Q. Chen, M. Tripathy, E. Luijten, K. S. Schweizer and S. Granick, Adv. Mater., 22, 1060 (2010)

    Article  CAS  Google Scholar 

  9. D. Dendukuri and P. S. Doyle, Adv. Mater., 21, 4071 (2009)

    Article  CAS  Google Scholar 

  10. A. Perro, S. Reculusa, S. Ravaine, E. Bourgeat-Lami and E. Duguet, J. Mater. Chem., 15, 3745 (2005).

    Article  CAS  Google Scholar 

  11. T. Hyeon, Chem. Commun., 8, 927 (2003)

    Article  Google Scholar 

  12. J. Park, J. Joo, S.G. Kwon, Y. Jang and T. Hyeon, Angew. Chem. Int. Ed., 46, 4630 (2007).

    Article  CAS  Google Scholar 

  13. T. Sugimoto, X. Zhou and A. Muramatsu, J. Coll. Interf. Sci., 259, 53 (2003)

    Article  CAS  Google Scholar 

  14. M. Ocana, M. P. Morales and C. J. Serna, J. Coll. Inter. Sci., 212, 317 (1999)

    Article  CAS  Google Scholar 

  15. R. Mendoza-Resendezl, O. Bomati-Miguell, M. PMorales, P. Bonville and C. J. Sernal, Nanotechnology, 15, S254 (2004).

    Article  Google Scholar 

  16. S. Sacanna, L. Rossi, B.W. M. Kuipers and A. P. Philipse, Langmuir, 22, 1822 (2006).

    Article  CAS  Google Scholar 

  17. T. T. Tran and X. Lu, J. Phys. Chem. C, 115, 3638 (2011).

    Article  CAS  Google Scholar 

  18. Y. Wei, R. Klajn, A.O. Pinchuk and B.A. Grzybowski, Small, 4, 10, 1635 (2008).

    Google Scholar 

  19. H. Lee, S. E. Habas, G. A. Somorjai and P. Yang, J. Am. Chem. Soc., 130, 5406 (2008).

    Article  CAS  Google Scholar 

  20. H. Gu, R. Zheng, X. Zhang and B. Xu, J. Am. Chem. Soc., 126, 5664 (2004).

    Article  CAS  Google Scholar 

  21. T. Teranishi, Y. Inoue, M. Nakaya, Y. Oumi and T. Sano, J. Am. Chem. Soc., 126, 9914 (2004).

    Article  CAS  Google Scholar 

  22. H. Yu, M. Chen, P.M. Rice, S. X. Wang, R. L. White and S. Sun, Nano. Lett., 5, 379 (2005).

    Article  CAS  Google Scholar 

  23. C. J. Murphy, A. M. Gole, S. E. Hunyadi and C. J. Orendorff, Inorg. Chem., 45, 7544 (2006).

    Article  CAS  Google Scholar 

  24. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Adv. Mater., 15, 353 (2003).

    Article  CAS  Google Scholar 

  25. Y.-W. Jun, J.-H. Lee, J.-S. Choi and J. Cheon, J. Phys. Chem. B, 109, 14795 (2005).

    Article  CAS  Google Scholar 

  26. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, Nature, 404, 59 (2000).

    Article  CAS  Google Scholar 

  27. P. D. Cozzoli, L. Manna, M. L. Curri, S. Kudera, C. Giannini, M. Striccoli and A. Agostiano, Chem. Mater., 17, 1296 (2005).

    Article  CAS  Google Scholar 

  28. J.-W. Seo, Y.-W. Jun, S. J. Ko and J. Cheon, J. Phys. Chem. B, 109, 5389 (2005).

    Article  CAS  Google Scholar 

  29. X, Lu, M. Rycenga, S. E. Skrabalak, B. Wiley and Y. Xia, Annu. Rev. Phys. Chem., 60 167 (2009).

    Article  CAS  Google Scholar 

  30. J. H. Yu, J. Joo, H. M. Park, S.-I. Baik, Y.W. Kim, S. C. Kim and T. Hyeon, J. Am. Chem. Soc., 127, 5662 (2005).

    Article  CAS  Google Scholar 

  31. C. Pacholski, A. Kornowski and H. Weller, Angew. Chem. Int. Ed., 41, 1188 (2002).

    Article  CAS  Google Scholar 

  32. N. Du, H. Zhang, B. Chen, X. Ma and D. Yang, J. Phys. Chem. C, 111, 12677 (2007).

    Article  CAS  Google Scholar 

  33. H.M. Chen, R.-S. Liu, K. Asakura, L.-Y. Jang and J.-F. Lee, J. Phys. Chem. C, 111, 18550 (2007).

    Article  CAS  Google Scholar 

  34. B. Nikoobakht and M. A. El-Sayed, Chem. Mater., 15, 1957 (2003).

    Article  CAS  Google Scholar 

  35. S. Kudera, L. Carbone, M. F. Casula, R. Cingolani, A. Falqui, E. Snoeck, W. J. Parak and L. Manna, Nano Lett. 5, 445 (2005).

    Article  CAS  Google Scholar 

  36. T. Mokari, C.G. Sztrum, A. Salant, E. Rabani and U. Banin, Nat. Mater., 4, 855 (2005)

    Article  CAS  Google Scholar 

  37. R. Costi, A. E. Saunders, E. Elmalen, A. Salant and U. Banin, Nano Lett., 8, 637 (2008).

    Article  CAS  Google Scholar 

  38. P. Li, Z. Wei, T. Wu, Q. Peng and Y. Li, J. Am. Chem. Soc., 133, 5660 (2011).

    Article  CAS  Google Scholar 

  39. Y. Xiong, A. R. Siekkinen, J. Wang, Y. Yin, M. J. Kim and Y. Xia, J. Mater. Chem., 17, 2600 (2007).

    Article  CAS  Google Scholar 

  40. C. S. Ah, Y. J. Yun, H. J. Park, W.-J. Kim, D. H. Ha and W. S. Yun, Chem. Mater., 17, 5558 (2005).

    Article  CAS  Google Scholar 

  41. M. Maillard, P. Huang and L. Brus, Nano Lett., 3, 1611 (2003).

    Article  CAS  Google Scholar 

  42. Y. C. Cao, J. Am. Chem. Soc., 124, 11244 (2002).

    Article  Google Scholar 

  43. R. Si, Y.-W. Zhang, L-P. You and C.-H. Yan, Angew. Chem., 117, 3320 (2005).

    Article  Google Scholar 

  44. M. B. Sigman, Jr., A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee and B. A. Korgel, J. Am. Chem. Soc., 125, 16050 (2003)

    Article  CAS  Google Scholar 

  45. X. Li, H. Shen, J. Niu, S. Li, Y. Zhang, H. Wang and L. S. Li, J. Am. Chem. Soc., 132, 12778 (2010).

    Article  CAS  Google Scholar 

  46. C.-C. Chang, H.-L. Wu, C.-H. Kuo and M. H. Huang, Chem. Mater., 20, 7570 (2008).

    Article  CAS  Google Scholar 

  47. K.-S. Choi, Dalton Trans., 5432 (2008)

  48. C. Li, K. L. Shuford, M. Chen, E. J. Lee and S. O Cho, ACS Nano, 2, 1760 (2008).

    Article  CAS  Google Scholar 

  49. A. Tao, P. Sinsermsuksakul and P. Yang, Angew. Chem. Int. Ed., 45, 4597 (2006).

    Article  CAS  Google Scholar 

  50. M. Chen, J. Kim, J. P. Liu, H. Fan and S. Sun, J. Am. Chem. Soc., 128, 7132 (2006).

    Article  CAS  Google Scholar 

  51. D. Yu and V.W.-W. Yam, J. Am. Chem. Soc., 126, 13200 (2004).

    Article  CAS  Google Scholar 

  52. C.-K. Tsung, J. N. Kuhn, W. Huang, C. Aliaga, L.-I. Hung, G. A. Somorjai and P. Yang, J. Am. Chem. Soc., 131, 5816 (2009).

    Article  CAS  Google Scholar 

  53. K. Lee, M. Kim and H. Kim, J. Mater. Chem., 20, 3791 (2010).

    Article  CAS  Google Scholar 

  54. K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B, 107, 668 (2003).

    Article  CAS  Google Scholar 

  55. R. Gans, Ann. Phys., 37, 881 (1912).

    Article  CAS  Google Scholar 

  56. J. C. M. Garnett, Philos. Trnas. R. Soc., 203, 385 (1904).

    Article  CAS  Google Scholar 

  57. D. A. Bruggeman, Ann. Phys., 24, 636 (1935).

    Article  CAS  Google Scholar 

  58. L. M. Liz-Marzan, Langmuir, 22, 32 (2006).

    Article  CAS  Google Scholar 

  59. T. Jensen, L. Kelly, A. Lazarides and G. C. Schatz, J. Cluster Sci., 10, 295 (1999).

    Article  CAS  Google Scholar 

  60. L. Novotny, D.W. Pohl and B. Hecht, Opt. Lett., 20, 970 (1995).

    Article  CAS  Google Scholar 

  61. R. X. Bian, R. C. Dunn, X. S. Xie and P. T. Leung, Phys. Rev. Lett., 75, 4772 (1995).

    Article  CAS  Google Scholar 

  62. P.W. Barber, R. K. Chang and H. Massoudi, Phys. Rev. B, 27, 7251 (1983).

    Article  CAS  Google Scholar 

  63. B. J. Willy, S. H. Lim, Z.-Y. Li, J. McLellan, A. Siekkinen and Y. Xia, J. Phys. Chem. B, 110, 15666 (2006).

    Article  Google Scholar 

  64. C. A. Foss, G. L. Hornyak, J. A. Stockert and C. R. Martin, J. Phys. Chem., 98, 2963 (1994).

    Article  CAS  Google Scholar 

  65. M. L. Sandrock, C. D. Pibel, F. M. Geiger and C. A. Foss, J. Phys. Chem. B, 103, 2668 (1999).

    Article  CAS  Google Scholar 

  66. J. Perez-Juste, L. M. Liz-Marzan, S. Carnie, D.Y. C. Chan and P. Mulvaney, Adv. Funct. Mater., 14, 571 (2004).

    Article  CAS  Google Scholar 

  67. S. Link, M. B. Mohamel and M. A. El-Sayed, J. Phys. Chem. B, 103, 3073 (1999).

    Article  CAS  Google Scholar 

  68. B. J. Wiley, Y. Herricks, Y. Sun and Y. Xia, Nano Lett., 4, 1733 (2004).

    Article  CAS  Google Scholar 

  69. S. H. Im, Y. T. Lee, B. Wiley and Y. Xia, Angew. Chem. Int. Ed., 44, 2154 (2005).

    Article  CAS  Google Scholar 

  70. B. J. Wiley, Y. Xiong, Z.-Y. Li, Y. Yin and Y. Xia, Nano Lett., 6, 765 (2006).

    Article  CAS  Google Scholar 

  71. Y. Sun, B. Mayers, T. Herricks and Y. Xia, Nano Lett., 3, 955 (2003).

    Article  CAS  Google Scholar 

  72. B. J. Wiley, Y. Sun and Y. Xia, Langmuir, 21, 8077 (2005).

    Article  CAS  Google Scholar 

  73. I. Pastoriza-Santos and L. M. Liz-Marzan, Nano Lett., 2, 903 (2002).

    Article  CAS  Google Scholar 

  74. L. M. Liz-Marzan, Langmuir, 22, 32 (2006).

    Article  CAS  Google Scholar 

  75. J.-J. Jiang, Y.-G. Liu, L.-P. Jiang and J.-J. Zhu, Electrochem. Comm., 10, 355 (2008).

    Article  Google Scholar 

  76. A. Gomez-Ramirez, M. T. Lopez-Lopez, J. D. G. Duran and F. Gonzalez-Caballero, Soft Matter, 5, 3888 (2009).

    Article  CAS  Google Scholar 

  77. A. R. Tao, D. P. Ceperley, P Sinsermsuksakul, A. R. Neureuther and P. Yang, Nano Lett., 8, 4033 (2008).

    Article  CAS  Google Scholar 

  78. M. Mulvihill, A. Tao, K. Benjauthrit, J. Arnold and P. Yang, Angew. Chem. Int. Ed., 47, 6456 (2008).

    Article  CAS  Google Scholar 

  79. J. J. Urban, D.V. Talapin, E.V. Shevchenko, C. R. Kagan and C. B. Murray, Nat. Mater., 6, 115 (2007)

    Article  CAS  Google Scholar 

  80. E.V. Shevchenko, D.V. Talapin, N. A. Kotov, S. O’Brien and C. B. Murray, Nature, 439, 55 (2006).

    Article  CAS  Google Scholar 

  81. S. A. Claridge, A.W. Castleman, Jr., S. N. Khanna, C. B. Murray, A. Sen and P. S. Weiss, ACSNano, 3, 244 (2009).

    CAS  Google Scholar 

  82. X, Ye, J. E. Collins, Y. Kang, J. Chen, D. T. N. Chen, A.G. Yodh and C. B. Murray, Proc. Natl. Acad. Sci. USA, 107, 22430 (2010).

    Article  CAS  Google Scholar 

  83. M. R. Jones, R. J. Macfarlane, B. Lee, J. Zhang, K. L. Young, A. J. Senesi and C. A. Mirkin, Nat. Mater., 9, 913 (2010).

    Article  CAS  Google Scholar 

  84. A. Salant, E. Amitay-Sadovsky and U. Banin, J. Am. Chem. Soc., 128, 10006 (2006).

    Article  CAS  Google Scholar 

  85. J. L. Baker, A. Widmer-Cooper, M. F. Toney, P. L. Geissler and A. P. Alivisatos, Nano Lett., 10, 195 (2010).

    Article  CAS  Google Scholar 

  86. K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein and E. Kumacheva, Science, 329, 197 (2010).

    Article  CAS  Google Scholar 

  87. Z. Nie, D. Fava, E. Kumacheva, S. Zou, G. C. Walker and M. Rubinstein, Nat. Mater., 6, 609 (2007).

    Article  CAS  Google Scholar 

  88. Y. Wei, K. J. M. Bishop, J. Kim, S. Soh and Bartosz A. Grzybowski, Angew. Chem. Int. Ed., 48, 9477 (2009)

    Article  CAS  Google Scholar 

  89. H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White and S. Sur, Nano Lett., 5, 379 (2005).

    Article  CAS  Google Scholar 

  90. S. J. Tan, M. J. Campolongo, D. Luo and W. Cheng, Nat. Nanotech., 6, 268 (2011).

    Article  CAS  Google Scholar 

  91. H. Wang, D.W. Brandl, P. Nordlander and N. J. Halas, Acc. Chem. Res., 40, 53 (2007).

    Article  Google Scholar 

  92. K. G. Thomas, S. Barazzouk, B. I. Ipe, S. T. S. Joseph and P. V. Kamat, J. Phys. Chem. B, 108, 13066 (2004).

    Article  CAS  Google Scholar 

  93. M.A. Correa-Duarte, J. Perez-Juste, A. Sanchez-Iglesias, M. Giersig and L. M. Liz-Marzan, Angew. Chem. Int. Ed., 44, 4375 (2005).

    Article  CAS  Google Scholar 

  94. B. Sun and H. Sirringhaus, J. Am. Chem. Soc., 128, 16231 (2006).

    Article  CAS  Google Scholar 

  95. B. Sun and H. Sirringhaus, Nano Lett., 5, 2408 (2005).

    Article  CAS  Google Scholar 

  96. B. Sun and H. Sirringhaus, Nano Lett., 8, 1649 (2008).

    Article  Google Scholar 

  97. K. J. Stebe, E. Lewandowski and M. Ghosh, Science, 325, 159 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi-Ra Yi.

Additional information

Gi-Ra Yi received his BS degree in chemical engineering from Yonsei University, Korea, in 1997 and MS (1999) and PhD (2003) degrees in chemical and biomolecular engineering from KAIST, Korea. He undertook postdoctoral research at the University of California, Santa Barbara, USA, and worked briefly for the Corporate R&D Center of LG Chem Research Park and the Korea Basic Science Institute as a research scientist. In 2009, he joined Chungbuk National University, Korea, as an assistant professor in engineering chemistry. He was a visiting professor at Center for Soft Matter Research in New York University. His current interest is in self-assemblies of colloidal particles at micrometer or nanometer scales, as well as multiphase microfluidics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, G., Cho, YS., Park, S. et al. Synthesis and assembly of anisotropic nanoparticles. Korean J. Chem. Eng. 28, 1641–1650 (2011). https://doi.org/10.1007/s11814-011-0183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0183-5

Key words

Navigation