Skip to main content
Log in

Fabrication and self-assembly of the tetrahedron dimpled colloidal particles

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly monodisperse, tetrahedral colloidal particles featuring four spherical dimples arranged symmetrically one per face were synthesized via classical seeded polymerization. The depth and number of dimples on the surface of the particles could be precisely tuned by varying the operation parameters including temperature, the compound solvent polarity, and 2-ethylhexylmethacrylate (EHMA) monomer concentration. The formation mechanism of the anisotropic colloidal particles was ascribed to the phase separation of polystyrene phase and PEHMA phase. Furthermore, the obtained tetrahedron dimpled colloidal particles were assembled with well-matched spherical particles via depletion interaction and centrifugal force, forming a colloidal cluster with a well-defined complex structure. These anisotropic colloidal particles and the various structures assembled from them can be used potentially as the basic building blocks to construct multi-dimension materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Xie D, Ren X, Xie Y, Zhang X, Liao S (2016) Large-scale synthesis of monodisperse red blood cell (RBC)-like polymer particles. ACS Macro Lett 5(2):174–176

    Article  CAS  Google Scholar 

  2. Goerlitzer ESA, Klupp Taylor RN, Vogel N (2018) Bioinspired photonic pigments from colloidal self-assembly. Adv Mater 30(28):1706654

    Article  CAS  Google Scholar 

  3. Luo W, Cui Q, Fang K, Chen K, Ma H, Guan J (2020) Responsive hydrogel-based photonic nanochains for microenvironment sensing and imaging in real time and high resolution. Nano Lett 20(2):803–811

    Article  CAS  Google Scholar 

  4. Zeng M, King D, Huang D, Wang L, Chen M, Lei S, Lin P, Chen Y, Cheng Z (2019) Iridescence in nematics: Photonic liquid crystals of nanoplates in absence of long-range periodicity. P Natl A Sci 116(37):18322–18327

    Article  CAS  Google Scholar 

  5. Chen X, Song L, Jiang X, Zhang X (2019) Bioinspired superhydrophobic-superhydrophilic convertible film based on anisotropic red blood cell-like particles with protuberances. Colloid Surface A 579:123674

    Article  CAS  Google Scholar 

  6. Chang F, van Ravensteijn Bas GP, Lacina Kanvaly S, Kegel Willem K (2019) Bifunctional janus spheres with chemically orthogonal patches. ACS Macro Lett 8(6):714–718

    Article  CAS  Google Scholar 

  7. Glotzer SC, Solomon MJ (2007) Anisotropy of building blocks and their assembly into complex structures. Nat Mater 6:557–562

    Article  Google Scholar 

  8. Van Anders G, Ahmed NK, Smith R, Engel M, Glotzer SC (2014) Entropically patchy particles: engineering valence Through shape entropy. ACS Nano 8:931–940

    Article  CAS  Google Scholar 

  9. Champion JA, Katare YK, Mitragotri S (2007) Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121(1–2):3–9

    Article  CAS  Google Scholar 

  10. Ho CC, Keller A, Odell JA, Ottewill RH (1993) Preparation of monodisperse ellipsoidal polystyrene particles. Colloid polym Sci 271(5):469–479

    Article  CAS  Google Scholar 

  11. Zheng X, Liu M, He M, Pine DJ, Weck M (2017) Shape-shifting patchy particles. Angew Chem Int Edit 56(20):5507–5511

    Article  CAS  Google Scholar 

  12. Schnall-Levin M, Lauga E, Brenner MP (2006) Self-assembly of spherical particles on an evaporating sessile droplet. Langmuir 22(10):4547–4551

    Article  CAS  Google Scholar 

  13. Nie Z, Li W, Seo M, Xu S, Kumacheva E (2006) Janus and Ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc 128(29):9408–9412

    Article  CAS  Google Scholar 

  14. Dendukuri D, Tsoi K, Hatton TA, Doyle PS (2005) Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 21(6):2113–2116

    Article  CAS  Google Scholar 

  15. Lee D, Weitz DA (2009) Nonspherical colloidosomes with multiple compartments from double emulsions. Small 5(17):1932–1935

    Article  CAS  Google Scholar 

  16. Fan JB, Liu H, Song Y, Luo Z, Wang S (2018) Janus particles synthesis by emulsion interfacial polymerization: polystyrene as seed or beyond? Macromolecules 51(5):1591–1597

    Article  CAS  Google Scholar 

  17. Wang Y, Zhai S, Sun H (2020) Preparation of cylinder-like polystyrene-silica composite particles. Polymer 211:123094

    Article  CAS  Google Scholar 

  18. Wei L, Toyoko S, Hideto M (2018) A facile method for preparation of polymer particles having a “Cylindrical” shape. Angew Chem Int Edit 57(5):9936–9940

    Google Scholar 

  19. Guan BY, Yu L, Lou XWD (2016) Formation of Asymmetric bowl-Like mesoporous particles via emulsion-Induced interface anisotropic assembly. J Am Chem Soc 138(35):11306–11311

    Article  CAS  Google Scholar 

  20. Meijer J, Crassous JJ (2018) Phase behavior of bowl-shaped colloids: order and dynamics in plastic crystals and glasses. Small 14(46):1802049

    Article  CAS  Google Scholar 

  21. Son JH, Kim DI, Park JH, Seo H, Hong SG, Choi JH (2019) Effect of incorporation of sulfonate (SO3-) on surface sealing of polystyrene (PS)-based bowl. Polymer 167:85–92

    Article  CAS  Google Scholar 

  22. Kanako; Watanabe; Yui; Tajima; Takuya; Shimura (2019) Depletion-interaction-driven assembly of golf ball-like particles for development of colloidal macromolecules. J Colloid Interf Sci 534:81–87

    Article  CAS  Google Scholar 

  23. Hwangbo KH, Kim MR, Lee CS, Cho KY (2011) Facile fabrication of uniform golf-ball-shaped microparticles from various polymers. Soft Matter 7(22):10874

    Article  CAS  Google Scholar 

  24. Kang C, Honciuc A (2018) Influence of geometries on the assembly of snowman-shaped janus nanoparticles. ACS Nano 12(4):3741–3750

    Article  CAS  Google Scholar 

  25. Kim SH, Hollingsworth AD, Sacanna S, Chang SJ, Lee G, Pine DJ (2012) Synthesis and assembly of colloidal particles with sticky dimples. J Am Chem Soc 134(39):16115–16118

    Article  CAS  Google Scholar 

  26. Zhao S, Wu Y, Lu W, Liu B (2019) Capillary force driving directional 1D assembly of patchy colloidal discs. ACS Macro Lett 8(4):363–367

    Article  CAS  Google Scholar 

  27. Wu Y, Luo Z, Liu B, Yang Z (2017) Colloidal rings by site-selective growth on patchy colloidal disc templates. Angew Chem Int Edit 56(33):9807–9811

    Article  CAS  Google Scholar 

  28. Wang Y, Huang W, Huang L, Zhang S, Hua D, Zhu X (2013) Synthesis of walnut-like polystyrene particles using a “giant” surfactant and its superhydrophobic property. Polym Chem 4(7):2255

    Article  CAS  Google Scholar 

  29. Ge X, Wang M, Wang H, Yuan Q, Ge X, Liu H (2010) Novel walnut-like multihollow polymer particles: synthesis and morphology control. Langmuir 26(3):1635–1641

    Article  CAS  Google Scholar 

  30. Poutanen M, Guidetti G, Groeschel T (2018) Block copolymer micelles for photonic fluids and crystals. ACS Nano 12(4):3149–3158

    Article  CAS  Google Scholar 

  31. Hueckel T, Hocky GM, Sacanna S (2021) Total synthesis of colloidal matter. Nat Rev Mater 6:1053–1069

    Article  CAS  Google Scholar 

  32. Meijer JM, Meester V, Hagemans F, Lekkerkerker HNW, Philipse AP, Petukhov AV (2019) Convectively assembled monolayers of colloidal cubes: evidence of optimal packings. Langmuir 35(14):4946–4955

    Article  CAS  Google Scholar 

  33. Wang Y, Zheng X, Yi GR, Weck M (2014) Three-dimensional lock and key colloids. J Am Chem Soc 136(19):6866–6869

    Article  CAS  Google Scholar 

  34. Song Y, Zhou J, Jun-Bing F (2018) Hydrophilic/oleophilic magnetic janus particles for the rapid and efficient oil-water separation. Adv Funct Mater 28(32):1802493

    Article  CAS  Google Scholar 

  35. Zhai W, Song Y, Gao Z, Fan JB, Wang S (2019) Precise synthesis of polymer particles spanning from anisotropic janus particles to heterogeneous nanoporous particles. Macromolecules 52(9):3237–3243

    Article  CAS  Google Scholar 

  36. Guo Y, Van Ravensteijn BGP, Kegel WK (2019) Dimple colloids with tunable cavity size and surface functionalities. Macromolecules 52:4287–4294

    Article  CAS  Google Scholar 

  37. Luo Z, Zhou J, Liu B (2019) Engineering surface patterning of colloidal rings through plateau-rayleigh instability. Angew Chem Int Edit 58(47):16884–16888

    Article  CAS  Google Scholar 

  38. Ulbrich K et al (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116(9):5338–5431

    Article  CAS  Google Scholar 

  39. Okubo M, Fujibayashi T, Terada A (2005) Synthesis of micron-sized, monodisperse polymer particles of disc-like and polyhedral shapes by seeded dispersion polymerization. Colloid Polym Sci 283(7):793–798

    Article  CAS  Google Scholar 

  40. Fujibayashi T, Okubo M (2007) Preparation and thermodynamic stability of micron-sized, monodisperse composite polymer particles of disc-like shapes by seeded dispersion polymerization. Langmuir 23(15):7958–7962

    Article  CAS  Google Scholar 

  41. Wang Y, McGinley James T, Crocker John C (2017) Dimpled polyhedral colloids formed by colloidal crystal templating. Langmuir 33(12):3080–3087

    Article  CAS  Google Scholar 

  42. Deser A, Hubert C, Fu Z, Moulet L, Majimel J, Barbau P, Thill A, Lansalot M, Bourgeat-Lami E, Duguet E, Ravaine S (2013) Synthesis and site-specific functionalization of tetravalent, hexavalent, and dodecavalent silica particles. Angew Chem Int Edit 52(42):11068–11072

    Article  CAS  Google Scholar 

  43. Sacanna S, Irvine W, Chaikin P, Pine DJ (2010) Lock and key colloids. Nature 464:575–578

    Article  CAS  Google Scholar 

  44. Ugelstad J (1978) Swelling capacity of aqueous dispersions of oligomer and polymer substances and mixtures thereof. Die Makromolekulare Chemie 179(3):815–817

    Article  CAS  Google Scholar 

  45. Chern CS (2006) Emulsion polymerization mechanisms and kinetics. Prog Polym Sci 31(5):443–486

    Article  CAS  Google Scholar 

  46. Hinrichs D, Himstedt R, Dorfs D (2018) The size-selective interaction of key and lock nanocrystals driven by depletion attraction at the nanoscale. Nanoscale 10(21):9899–9907

    Article  CAS  Google Scholar 

  47. Stenqvist B, Trulsson M, Crassous JJ (2019) Modeling the assembly of oppositely charged lock- and key-colloids. Soft Matter 15(26):5234–5242

    Article  CAS  Google Scholar 

  48. Ivell SJ, Dullens RPA, Sacanna S, Aarts DGAL (2013) Emerging structural disorder in a suspension of uniformly dimpled colloidal particles. Soft Matter 9:9361–9365

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of National Natural Science Foundation of China (Grant No. 52076082).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Jiang or Xinya Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Song, L., Jiang, X. et al. Fabrication and self-assembly of the tetrahedron dimpled colloidal particles. J Mater Sci 57, 7400–7415 (2022). https://doi.org/10.1007/s10853-022-07087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07087-x

Navigation