Skip to main content
Log in

Bioethanol production from micro-algae, Schizocytrium sp., using hydrothermal treatment and biological conversion

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydrothermal fractionation for micro-algae, Schizocytrium sp., was investigated to separate sugars, lipids, and proteins. This fractionation process produced protein-rich solid cake and liquid hydrolysates, which contained oligomeric sugars and lipids. Oligomeric sugars and lipids were easily separated by liquid-liquid separation. Sugars in the separated hydrolyzate were determined to be mainly D-glucose and L-galactose. Fractionation conditions were optimized by response surface methodology (RSM). Optimal conditions were found to be 115.5 °C of reaction temperature, 46.7 min of reaction time, and 25% (w/w) of solid loading. The model predicted that maximum oligomeric sugar yield (based on untreated micro-algae weight), which can be recovered by hydrothermal fractionation at the optimum conditions, was 19.4 wt% (based on the total biomass weight). Experimental results were in agreement with the model prediction of 16.6 wt%. Production of bioethanol using micro-algae-induced glucan and E. coli KO11 was tested with SSF (simultaneous saccharification and fermentation), which resulted in 11.8 g-ethanol/l was produced from 25.7 g/l of glucose; i.e. the theoretical maximum ethanol yield based on glucan in hydrolyzate was 89.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Das and T. N. Veziroğlu, Int. J. Hydrog. Energy, 26, 13 (2001).

    Article  CAS  Google Scholar 

  2. C. Asada, Y. Nakamura and F. Kobayashi, Bioprocess Eng., 10, 346 (2005).

    Article  CAS  Google Scholar 

  3. Z. Kádár, Z. Szengyel and K. Réczey, Ind. Crop. Prod., 20, 103 (2004).

    Article  Google Scholar 

  4. S. Kim and B. E. Dale, Biomass Bioenerg., 26, 361 (2004).

    Article  Google Scholar 

  5. G. Lissens, H. Klinke, W. Verstraete, B. Ahring and A.B. Thomsen, J. Chem. Technol. Biotechnol., 79, 889 (2004).

    Article  CAS  Google Scholar 

  6. Z. Fan, C. South, K. Lyford, J. Munsie, P. van Walsum and L. R. Lynd, Bioprocess Biosyst. Eng., 26, 93 (2003).

    Article  CAS  Google Scholar 

  7. Y. Nakamura and T. Sawada, Biotechnol. Bioprocess Eng., 8, 205 (2003).

    Article  CAS  Google Scholar 

  8. T. H. Kim, J. S. Kim, C. Sunwoo and Y.Y. Lee, Bioresource Technol., 90, 39 (2003).

    Article  CAS  Google Scholar 

  9. T. H. Kim and Y. Y. Lee, Appl. Biochem. Biotechnol., 137–140(1–12), 81 (2007).

    Article  Google Scholar 

  10. T.H. Kim., Y.Y. Lee, C. Sunwoo and J. S. Kim Appl. Biochem. Biotechnol., 133(1), 41 (2006).

    Article  CAS  Google Scholar 

  11. G. Mtui and Y. Nakamura, Biodegradation, 16, 493 (2005).

    Article  CAS  Google Scholar 

  12. N. Lark, Y. Xia, C. G. Qin, C. S. Gong and G. T. Tsao, Biomass Bioenerg., 12, 135 (1997).

    Article  CAS  Google Scholar 

  13. M. Green and G. Shelef, Chem. Eng. J., 40, B25 (1989).

    Article  CAS  Google Scholar 

  14. M. Green, S. Kimchie, A. I. Malester, B. Rugg and G. Shelef, Biol. Wastes, 26, 285 (1988).

    Article  CAS  Google Scholar 

  15. S.W. Cheung and B. C. Anderson, Bioresour. Technol., 59, 81 (1997).

    Article  CAS  Google Scholar 

  16. Z. Wen, W. Liao and S. Chen, Bioresour. Technol., 91, 31 (2004).

    Article  CAS  Google Scholar 

  17. S. Sawayama, S. Inoue, Y. Dote and S.Y. Yokoyama, Energy Convers. Manage., 36, 729 (1995).

    Article  CAS  Google Scholar 

  18. T.G. Dunahay, E.E. Jarvis, S.S. Dais and P.G. Roessler, Appl. Biochem. Biotechnol., 57–58, 223 (1996).

    Article  Google Scholar 

  19. A. Banerjee, R. Sharma, Y. Chisti and U.C. Banerjee, Crit. Rev. Biotechnol., 22, 245 (2002).

    Article  CAS  Google Scholar 

  20. M. Gavrilescu and Y. Chisti, Biotechnol. Adv., 23, 471 (2005).

    Article  CAS  Google Scholar 

  21. B. H. Um and Y. S. Kim, J. Ind. Eng. Chem., 15, 1 (2009).

    Article  CAS  Google Scholar 

  22. S. Kim, Y. Jeon, W. Kim, H. Back, P. Park, H. Byun and S. Bai, J. Fish. Sci. Technol., 4, 75 (2001).

    CAS  Google Scholar 

  23. R. Harun, M. K. Danquah and G.M. Forde, J. Chem. Technol. Biotechnol., 85(2), 199 (2010).

    CAS  Google Scholar 

  24. A.B. Ross, J.M. Jones, M. L. Kubacki and T. Bridgeman, Bioresour. Technol., 99, 6494 (2008).

    Article  CAS  Google Scholar 

  25. A. Widjaja, C. C. Chien and Y. H. Ju, J. Taiwan Inst. Chem. Eng., 40, 13 (2009).

    Article  CAS  Google Scholar 

  26. M. Matsumoto, H. Yokouchi, N. Suzuki, H. Ohata and T. Matsunaga, Appl. Biochem. Biotechnol., 105–108, 247 (2003).

    Article  Google Scholar 

  27. J. Sheehan, T. Dunahay, J. Benemann and P. Roessler, A Look Back at the U.S. Department of Energy’s Aquatic Species Program-Biodiesel from Algae, Technical Report for NREL (1998).

  28. M. Du, D. U. Ahn and J. L. Sell, Poultry Sci., 79, 1749 (2000).

    CAS  Google Scholar 

  29. L. Sijtsma and M. E. de Swaaf, Appl. Microbiol. Biotechnol., 64, 146 (2004).

    Article  CAS  Google Scholar 

  30. N. Dubois, K. A. Gillies, J. K. Hamilton, P.A. Rebers and F. Smith, Anal. Chem., 28, 350 (1956).

    Article  CAS  Google Scholar 

  31. W. M. Darley, D. Porter and M. S. Fuller, Ach. Mikrobiol., 90, 89 (1973).

    Article  CAS  Google Scholar 

  32. G. E. P. Box and K.B. Wilson, J. R. Stat. Soc., (Ser B), 13, 1 (1951).

    Google Scholar 

  33. S. F.G. Oskouie, F. Tabandeh, B. Yakhchali and F. Eftekhar, Biochem. Eng. J., 39, 37 (2008).

    Article  CAS  Google Scholar 

  34. C. Tari, H. Genckal and F. Tokatli, Process Biochem., 41, 659 (2006).

    Article  CAS  Google Scholar 

  35. V.V.R. Bandaru, S.R. Somalanka, D.R. Menduc, N.R. Madicherla and A. Chityala, Enzyme. Microb. Technol., 38, 209 (2006).

    Article  CAS  Google Scholar 

  36. S. Sharma, A. Malik and S. Satya, J. Hazard. Mater., 164, 1198 (2009).

    Article  CAS  Google Scholar 

  37. B. H. Um and T. R. Hanley, Korean J. Chem. Eng., 25(5), 1094 (2008).

    Article  CAS  Google Scholar 

  38. K. Chauhan, U. Trivedi and K.C. Patel, J. Microbiol. Biotechnol., 16, 1410 (2006).

    CAS  Google Scholar 

  39. R. M. Banik, A. Santhiagu and S. Upadhyay, Bioresour. Technol., 98, 792 (2007).

    Article  CAS  Google Scholar 

  40. G. E. P. Box, W.G. Hunter and J. S. Hunter, Statistics for experimenters: an introduction to design, data analysis and model building, John Wiley and Sons Inc., New York, 653 (1978).

    Google Scholar 

  41. M. L. Cazetta, M. A. P.C. Celligoi, J.B. Buzato and I. S. Scarmino, Bioresour. Technol., 98, 2824 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Hyun Kim.

Additional information

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.K., Um, BH. & Kim, T.H. Bioethanol production from micro-algae, Schizocytrium sp., using hydrothermal treatment and biological conversion. Korean J. Chem. Eng. 29, 209–214 (2012). https://doi.org/10.1007/s11814-011-0169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0169-3

Key words

Navigation