Skip to main content
Log in

Pervaporation properties of polyvinyl alcohol/ceramic composite membrane for separation of ethyl acetate/ethanol/water ternary mixtures

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In further purification of ethyl acetate (EAC) process, azeotropic distillation or extractive distillation is usually applied. High energy consumption limits the economic profit of the process. In this study, pervaporation separation of EAC/ethanol (EA)/water ternary mixtures using the ceramic-supported polyvinyl alcohol (PVA) composite membrane was investigated to substitute the azeotropic distillation or extractive distillation. Swelling experiments were performed to evaluate the sorption characteristic of the membrane. Flory-Huggins theory was applied to study the interaction between the membrane and the penetrant. The UNIFAC model was adopted to investigate the variation of the penetrant activity in the membrane. The effects of operation temperature, feed water content and feed flow rate on the PV performance of the membrane were systematically investigated. The composite membrane exhibited high PV performance with the total flux of 2.1 kg·m−2·h−1 and 94.9 wt% permeate concentration of water (operation condition: feed composition 82.6 wt% EAC, 8.4 wt% EA, 9 wt% water, feed temperature 60 °C, feed flow rate 252 mL· min−1). The PV performance of the membrane varied slightly over a continuous PV experiment period of 110 h. Our results demonstrated that the PVA/ceramic membrane was a potential candidate for the purification of EAC/EA/water ternary mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Dutia, Chemical Weekly-Bombay-., 49, 176 (2004).

    Google Scholar 

  2. A. Szanyi, P. Mizsey and Z. Fonyo, Ind. Eng. Chem. Res., 43, 8269 (2004).

    Article  CAS  Google Scholar 

  3. X. Feng and R. Y. M. Huang, Ind. Eng. Chem. Res., 36, 1048 (1997).

    Article  CAS  Google Scholar 

  4. P. D. Chapman, X. Y. Tan, A. G. Livingston, K. Li and T. Oliveira, J. Membr. Sci., 268, 13 (2006).

    Article  CAS  Google Scholar 

  5. S. Sommer and T. Melin, Chem. Eng. Process., 44, 1138 (2005).

    Article  CAS  Google Scholar 

  6. D. A. Devi, B. Smitha, S. Sridhar, S. S. Jawalkar and T. M. Aminabhavi, J. Chem. Technol. Biotechnol., 82, 993 (2007).

    Article  CAS  Google Scholar 

  7. K. S. Chang, Y. H. Huang, K.R. Lee and K. L. Tung, J. Membr. Sci., 354, 93 (2010).

    Article  CAS  Google Scholar 

  8. Z. M. Mao, Y. M. Cao, X. M. Jie, G. D. Kang, M. Q. Zhou and Q. Yuan, Sep. Purif. Technol., 72, 28 (2010).

    Article  CAS  Google Scholar 

  9. L. Y. Jiang, T. S. Chung and R. Rajagopalan, AIChE J., 53, 1745 (2007).

    Article  CAS  Google Scholar 

  10. J. H. Chang, J. K. Yoo, S. H. Ahn, K. H. Lee and S.M. Ko, Korean J. Chem. Eng., 15, 28 (1998).

    Article  CAS  Google Scholar 

  11. H. S. Choi, S. D. Hong, G. J. Hwang, C. S. Park, K. K. Bae and K. Onuki, Korean J. Chem. Eng., 23, 288 (2006).

    Article  CAS  Google Scholar 

  12. H. H. Nguyen, N. Jang and S. H. Choi, Korean J. Chem. Eng., 26, 1 (2009).

    Article  CAS  Google Scholar 

  13. Y. Salt, A. Hasanoğlu, İ. Salt, S. Keleşer, S. Özkan and S. Dinçr, Vacuum., 79, 215 (2005).

    Article  CAS  Google Scholar 

  14. H. I. Shaban, J. Appl. Polym. Sci., 70, 2361 (1998).

    Article  CAS  Google Scholar 

  15. H. K. Yuan, Z. L. Xu, J. H. Shi and X. H. Ma, J. Appl. Polym. Sci., 109, 4025 (2008).

    Article  CAS  Google Scholar 

  16. D. A. Devi, K. V. S. N. Raju and T. M. Aminabhavi, J. Appl. Polym. Sci., 103, 3405 (2007).

    Article  CAS  Google Scholar 

  17. Y. X. Zhu, S. S. Xia, G. P. Liu and W. Q. Jin, J. Membr. Sci., 349, 341 (2010).

    Article  CAS  Google Scholar 

  18. X. H. Zhang, Q. L. Liu, Y. Xiong, A. M. Zhu, Y. Chen and Q. G. Zhang, J. Membr. Sci., 327, 274 (2009).

    Article  CAS  Google Scholar 

  19. S. S. Xia, X. L. Dong, Y. X. Zhu, W. Wei, F. J. Xiangli and W. Q. Jin, Sep. Purif. Technol., 77, 53 (2011).

    Article  CAS  Google Scholar 

  20. J. G. Wijmans and R. W. Baker, J. Membr. Sci., 107, 1 (1995).

    Article  CAS  Google Scholar 

  21. T. Oishi and J. M. Prausnitz, Ind. Eng. Chem. Process Des. Dev., 17, 333 (1978).

    Article  CAS  Google Scholar 

  22. A. Fredenslund, J. Gmehling and P. Rasmussen, Vapour-Liquid Equilibria Using UNIFAC, Elsevier Science Publishers B V, Amsterdam (1977).

    Google Scholar 

  23. F. J. Xiangli, Y. W. Chen, W. Q. Jin and N. P. Xu, Ind. Eng. Chem. Res., 46, 2224 (2007).

    Article  CAS  Google Scholar 

  24. M. H. V. Mulder and C. A. Smolders, J. Membr. Sci., 17, 289 (1984).

    Article  CAS  Google Scholar 

  25. K. S. Chang, C. C. Hsiung, C. C. Lin and K. L. Tung, J. Phys. Chem. B., 113, 10159 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanqin Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, S., Wei, W., Liu, G. et al. Pervaporation properties of polyvinyl alcohol/ceramic composite membrane for separation of ethyl acetate/ethanol/water ternary mixtures. Korean J. Chem. Eng. 29, 228–234 (2012). https://doi.org/10.1007/s11814-011-0154-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0154-x

Key words

Navigation