Skip to main content
Log in

Dissolution of a South African calcium based material using urea: An optimized process

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The rate at which limestone dissolves is very important in wet flue gas desulfurization process (FGD). High dissolution rates provide better alkalinity, which is important for sulfur dioxide (SO2) absorption. This study investigates the use of urea to improve the dissolution rate of limestone. The dissolution characteristics have been studied by using a pH-Stat method. The dissolution rate constant was measured according to the shrinking core model with surface control, i.e. (1−(1−X)1/3)=k r t. The effect of experimental variables such as temperature, amount of urea, solid to liquid ratio and stirring speed on the dissolution rate of limestone were investigated. Using a central composite design (CCD) of experiments variables, a mathematical model was developed to correlate the experimental variables to the dissolution rate constant. The experimental value was found to agree satisfactorily with predicted dissolution rate constant. The model shows that high temperature and low solid to liquid ratio improves the dissolution rate. The dissolution rate increased slightly with increase in the stirring speed. In the presence of urea the dissolution rate constant increased by 122%. The dissolution reaction follows a shrinking-core model with the chemical reaction control as the rate-controlling step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. F. Randall and D. K. Matibe, Energy Policy, 31, 721 (2003).

    Article  Google Scholar 

  2. J. Kaminski, Appl. Energy, 75, 165 (2003).

    Article  CAS  Google Scholar 

  3. H. K. Lee, B.R. Deshwal and K. S. Yoo, Korean J. Chem. Eng., 22, 208 (2005).

    Article  CAS  Google Scholar 

  4. M. Kang, J. H. Park, J. S. Choi, E. D. Park and J. E. Yie, Korean J. Chem. Eng., 24, 191 (2007).

    Article  Google Scholar 

  5. J. H. Choi, J. H. Kim, Y. C. Bak, R. Amal and J. Scott, Korean J. Chem. Eng., 22, 844 (2005).

    Article  CAS  Google Scholar 

  6. S. Uchida, H. Moriguchi, H. Maejima, K. Koide and S. Kageyama, Canadian J. Chem. Eng., 56, 690 (1978).

    Article  CAS  Google Scholar 

  7. L. Eisenlohr, K. Meteva, F. Gabrovsek and W. Dreybrodt, Geochimet Coschimica Acta, 63, 989 (1999).

    Article  CAS  Google Scholar 

  8. L. Plan, Geomopho., 68, 201 (2005).

    Article  Google Scholar 

  9. Z.O. Siagi and M. M. Mbarawa, J. Hazard. Mater., 163, 678 (2007).

    Article  Google Scholar 

  10. S.M. Shih, J. P. Lin and G.Y. Shiau, J. Hazard. Mater., 79, 159 (2000).

    Article  CAS  Google Scholar 

  11. C. Hosten and M. Gulsun, Min. Eng., 17, 97 (2004).

    Article  CAS  Google Scholar 

  12. G. T. Hefter and R. P. T. Tomkins, The experimental determination of solubilities, John Wiley (2003).

  13. A. Stergarsek M. Gerbec, R. Kocjančič and P. Frkal, Acta Chim. Slov., 46, 323 (1999).

    CAS  Google Scholar 

  14. T. Takashina, S. Honjo, N. Ukawa and K. Iwashita, Soc. Chem. Eng. Japan., 35, 197 (2002).

    Article  CAS  Google Scholar 

  15. H. L. Rutto, Z.O. Ziagi and M.M. Mbarawa, J. Hazard. Mater., 168, 1532 (2009).

    Article  CAS  Google Scholar 

  16. K. Sekiguchi and N. Obi, Man. Chem. Pharm. Bull., 9, 866 (1961).

    Article  CAS  Google Scholar 

  17. S. Hausmanns, G. Laufenberg and B. Kunz, Desalination, 104 95(1996).

  18. D. C. Montgomery, Design and analysis of experiments, John Wiley and Sons Ltd., New York (2001).

    Google Scholar 

  19. D. C. Drehmel, Symp., 46, 123 (2001).

    Google Scholar 

  20. J. Ahlbeck, T. Engman and M. Vihma, Chem. Eng. Sci., 48, 3479 (1993).

    Article  CAS  Google Scholar 

  21. J. Ahlbeck, T. Engman and M. Vihma, Chem. Eng. Sci., 50, 1081 (1995).

    Article  CAS  Google Scholar 

  22. P.V. Danckwerts, Gas-liquid reactions, McGraw-Hill, New York (1970).

    Google Scholar 

  23. O. Levenspiel, Chemical reaction engineering, John Wiley and Sons, New York (1972).

    Google Scholar 

  24. X. Gao, R. Guo, H. Ding, Zh. Luo and K. Cen, J. Hazard. Mater., 168, 1059 (2009).

    Article  CAS  Google Scholar 

  25. A. Aydogan, M. Erdemoglu and G. Ucar, Hydrometa., 88, 52 (2007).

    Article  CAS  Google Scholar 

  26. P. K. Calderbank and M. B. Moo-Young, Chem. Eng. Sci., 16, 39 (1961).

    Article  CAS  Google Scholar 

  27. P. Harriott, AIChE J., 8, 93 (1962).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilary Rutto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutto, H., Enweremadu, C. Dissolution of a South African calcium based material using urea: An optimized process. Korean J. Chem. Eng. 29, 1–8 (2012). https://doi.org/10.1007/s11814-011-0136-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0136-z

Key words

Navigation