Skip to main content
Log in

Characterizations of composite cathodes with La0.6Sr0.4Co0.2Fe0.8O3−δ and Ce0.9Gd0.1O1.95 for solid oxide fuel cells

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Composite cathodes with La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) and Ce0.9Gd0.1O1.95 (GDC) are investigated to assess for solid oxide fuel cell (SOFC) applications at relatively low operating temperatures (650–800 °C). LSCF with a high surface area of 55 m2g−1 is synthesized via a complex method involving inorganic nano-dispersants. The fuel cell performances of anode-supported SOFCs are characterized as a function of compositions of GDC with a surface area of 5 m2g−1. The SOFCs consist of the following: LSCF-GDC composites as a cathode, GDC as an interlayer, yttrium stabilized zirconia (YSZ) as an electrolyte, Ni-YSZ (50: 50 wt%) as an anode functional layer, and Ni-YSZ (50: 50 wt%) for support. The cathodes are prepared for 6LSCF-4GDC (60: 40 wt%), 5LSCF-5GDC (50: 50 wt%), and 4LSCF-6GDC (40: 60 wt%). The 5LSCF-5GDC cathode shows 1.29 Wcm−2, 0.97 Wcm−2, and 0.47 Wcm−2 at 780 °C, 730 °C, and 680 °C, respectively. The 6LSCF-4GDC shows 0.92 Wcm−2, 0.71 Wcm−2, and 0.54 Wcm−2 at 780 °C, 730 °C, and 680 °C, respectively. At 780 °C, the highest fuel cell performance is achieved by the 5LSCF-5GDC, while at 680 °C the 6LSCF-4GDC shows the highest performance. The best composition of the porous composite cathodes with LSCF (55 m2g−1) and GDC (5 m2g−1) needs to be considered with a function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Dusastre and J. A. Kilner, Solid State Ionics, 126, 163 (1999).

    Article  CAS  Google Scholar 

  2. D. Kus¡s¡cer, J. Holc, S. Hrovat and D. Kolar, J. Eur. Ceram. Soc., 21, 1817 (2001).

    Article  Google Scholar 

  3. A. Mai, V. A. C. Haanappel, S. Uhlenbruck, F. Tietz and D. Stöver, Solid State Ionics, 176, 1341 (2005).

    Article  CAS  Google Scholar 

  4. A. Mai, V. A. C. Haanappel, S. Uhlenbruck, F. Tietz and D. Stöver, Solid State Ionics, 177, 2103 (2006).

    Article  CAS  Google Scholar 

  5. Y. Teraoka, H.M. Zhang, K. Okamoto and N. Yamazoe, Mater. Res. Bull., 23, 51 (1988).

    Article  CAS  Google Scholar 

  6. J. Fleig, J. Power Sources, 105, 228 (2002).

    Article  CAS  Google Scholar 

  7. J.W. Hwang, J.Y. Lee, D. H. Jo, H.W. Jung and S. H. Kim, Korean J. Chem. Eng., 28, 143 (2011).

    Article  CAS  Google Scholar 

  8. V. A. C. Haanappel, J. Mertens, D. Rutenbeck, C. Tropartz, W. Herzhof, D. Sebold and F. Tietz, J. Power Sources, 141, 216 (2005).

    Article  CAS  Google Scholar 

  9. S. B. Adler, J.A. Lane and B. C. H. Steele, J. Electrochem. Soc., 143, 3554 (1996).

    Article  CAS  Google Scholar 

  10. J. A. Kilner, R. A. De Souza and I.C. Fullarton, Solid State Ionics, 86–88, 703 (1996).

    Article  Google Scholar 

  11. J. Fleig, Annu. Rev. Mater. Res., 33, 361 (2003).

    Article  CAS  Google Scholar 

  12. V.V. Srdic, R. P. Omorjan and J. Seidel, Mater. Sci. Eng. B., 116, 119 (2005).

    Article  Google Scholar 

  13. E. P. Murray, M. J. Sever and S. A. Barnett, Solid State Ionics, 148, 27 (2002).

    Article  Google Scholar 

  14. N. Gunasekaran, S. Saddawi and J. J. Carberry, J. Catal., 159, 107 (1996).

    Article  CAS  Google Scholar 

  15. Y. Liu, H. Zheng, J. R. Liu and T. Zhang, Chem. Eng. J., 89, 213 (2002).

    Article  CAS  Google Scholar 

  16. A. Dutta, J. Mukhopadhyay and R.N. Basu, J. Eur. Ceram. Soc., 29, 2003 (2009).

    Article  CAS  Google Scholar 

  17. S. Shukla, S. Seal, R. Vij and S. Bandyopadhyay, Nano Lett., 3, 397 (2003).

    Article  CAS  Google Scholar 

  18. J. H. Kim, Y. M. Park and H. Kim, J. Power Sources, 196, 3544 (2011).

    Article  CAS  Google Scholar 

  19. Y. Leng, S. Chan and Q. Liu, Int. J. Hydrog. Energy, 33, 3808 (2008).

    Article  CAS  Google Scholar 

  20. J.W. Kim, A.V. Virkar, K. Z. Fung, K. Mehta and S. C. Singhal, J. Electrochem. Soc., 146(1), 69 (1999).

    Article  CAS  Google Scholar 

  21. H. Schichlein, A. C. Muller, M. Voigts, A. Krugel and E. Ivers-tiffee, J. Appl. Electrochem., 32, 875 (2002).

    Article  CAS  Google Scholar 

  22. A. Leonide, V. Sonn, A. Weber and E Ivers-Tiffée, J. Electrochem. Soc., 155, B36 (2008).

    Article  CAS  Google Scholar 

  23. Y. M. Park, J.H. Kim and H. Kim, Int. J. Hydrog. Energy, 36, 5617 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haekyoung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.H., Park, Y.M., Kim, T. et al. Characterizations of composite cathodes with La0.6Sr0.4Co0.2Fe0.8O3−δ and Ce0.9Gd0.1O1.95 for solid oxide fuel cells. Korean J. Chem. Eng. 29, 349–355 (2012). https://doi.org/10.1007/s11814-011-0131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0131-4

Key words

Navigation