Skip to main content
Log in

Statistical methodology for optimizing the dilute acid hydrolysis of sugarcane bagasse

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In converting advanced biomass to fuel, one pretreatment that has been extensively explored is a high temperature, dilute-sulfuric acid (H2SO4) process. This effectively hydrolyzes the hemicellulosic portion of the lignocellulosic biomass to fermentable sugars. Our aim was to optimize the concentration of sulfuric acid and residence time to release xylose from the hemicellulose of sugarcane bagasse. According to response surface methodology (RSM), the optimum concentrations and residence time were determined. The experimental maximum yield for xylose production was found to be 78.9% at 170 °C, 0.24% acid, for 15 min, and 76.4% at 200 °C, 0.22% acid, for 6 min. The predicted maximum yield obtained for the fitted model was found to be 80.3% and 78.1% for the conditions stated above, respectively. The experimental yield was around 1.5% lower than that of the predicted yield. It was confirmed in this study that pentose sugars (xylose and arabinose) derived from hemicellulose fraction were further degraded. The statistical optimization method, which incorporates reaction time, temperature and acid concentration, did prove to provide a useful means of trading off the combined effects of these three variables on total xylose recovery yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pandey, C. R. Soccol, P. Nigam and V. T. Soccol, Biores. Technol., 74, 69 (2000).

    Article  CAS  Google Scholar 

  2. M. A. Ferrara, E. P. S. Bon and J. S. A. Neto, Appl. Biochem. Biotechnol., 98–100, 289 (2002).

    Article  Google Scholar 

  3. C. M. Takahashi, K.G. C. Lima, D. F. Takahashi and F. Alterthum, World J. Microb. Biotechnol., 16, 829 (2000).

    Article  CAS  Google Scholar 

  4. E. Frollini and M. J. A. Pimenta, Anais Assoc. Bras. Qu m., 46(1), 43 (1997).

    Google Scholar 

  5. A. Pessoa Jr., I.M. Mancilha and S. Sato, Brazilian J. Chem. Eng., 14, 291 (1997).

    CAS  Google Scholar 

  6. B. H. Um, B. Frideman and G. P. van Walsum, Holzforschung., 65, 51 (2011).

    Article  CAS  Google Scholar 

  7. S.W. Baek, J. S. Kim, Y. K. Park, Y. S. Kim and K. K. Oh, Biotechnol. Biopro. Eng., 13, 332 (2008).

    Article  CAS  Google Scholar 

  8. B. H. Um and G. P. van Walsum, Appl. Biochem. Biotechnol., 153, 127 (2009).

    Article  CAS  Google Scholar 

  9. S. E. Jacobsen and C. E. Wyman, Appl. Biochem. Biotechnol., 84–86, 81 (2000).

    Article  Google Scholar 

  10. S. Walton, G. P. van Walsum and A. van Heiningen, Bioresour. Technol., 101(6), 1935 (2009).

    Article  Google Scholar 

  11. B. H. Um and G. P. van Walsum, Bioresour. Technol., 101, 5978 (2010).

    Article  CAS  Google Scholar 

  12. H. C. Chen, Food Biotechnol., 10, 13 (1996).

    Article  CAS  Google Scholar 

  13. M. Giovanni, Food Technol., 37, 96 (1983).

    Google Scholar 

  14. B. R. Cordenunsi, R. S. F. da Silva, K. C. Srivastava, S. Fabre-Sanches and M. A. Perre, J. Biotechnol., 2, 1 (1985).

    Article  CAS  Google Scholar 

  15. P.V. Rao, K. Jayaraman and C. M. Lakshmanan, Process Biochem., 28, 391 (1993).

    Article  CAS  Google Scholar 

  16. A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton and D. Crocker, Determination of Sugars, Byproduct, and Degradation Products in Liquid Fraction Process Samples, NREL/TP-510-42623 (2008).

  17. S. B. Kim, B. H. Um and S. C. Park, Appl. Biochem. Biotechnol., 91–93, 91 (2001).

    Google Scholar 

  18. B. H. Um, M.N. Karim and L. L. Henk, Appl. Biochem. Biotechnol., 105–108, 115 (2002).

    Google Scholar 

  19. B. H. Um and T. R. Hanley, Korean J. Chem. Eng., 25(5), 1094 (2008).

    Article  CAS  Google Scholar 

  20. B. H. Um and G. P. van Walsum, Appl. Biochem. Biotechnol., 161, 432 (2010).

    Article  CAS  Google Scholar 

  21. B. Sipos, J. Reczey, Z. Somorai, Z. Kadar, D. Dienes and K. Reczey, Appl. Biochem. Biotechnol., 153(1–23), 151 (2008).

    Google Scholar 

  22. T. S. Jeong, B. H. Um, J. S. Kim and K. K. Oh, Appl. Biochem. Biotechnol., 161, 22 (2010).

    Article  CAS  Google Scholar 

  23. B. P. Lavarack, G. J. Griffin and D. Rodman, Biomass Bioenergy, 23, 367 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Ho Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Um, BH., Bae, SH. Statistical methodology for optimizing the dilute acid hydrolysis of sugarcane bagasse. Korean J. Chem. Eng. 28, 1172–1176 (2011). https://doi.org/10.1007/s11814-011-0058-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0058-9

Key words

Navigation