Skip to main content
Log in

Multi-response optimization of acid hydrolysis in sugarcane bagasse to obtain high xylose concentration

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Sugarcane bagasse is an agro-industrial waste produced from the sugar industry, which is composed of cellulose, hemicellulose, and lignin. It can be used as a raw material to get xylose, which is used to obtain various products of industrial interest, such as bioethanol and xylitol, among others. The objective of this work was to optimize the acid hydrolysis stage of sugarcane bagasse to obtain the maximum of xylose and the minimum of acetic acid concentration. The response surface methodology and the desirability criterion were used, evaluating the concentration of sulfuric acid (H2SO4: 1, 2, 3% v/v), the solid-liquid ratio (LSR: 6, 9, 12 ml/g), and reaction time (t: 10, 20, 30 min), as dependent variables and as response variables the maximum of xylose and the minimum of acetic acid concentration. The optimal conditions found by acid hydrolysis were 0.86% v/v of H2SO4, 22.7 min of reaction time, and 6.2 of LSR showing values of 20.0 g/L of xylose and 3.05 g/L of acetic acid. These conditions were experimentally validated, obtaining 20.37 ± 0.12 g/L, while the acetic acid concentration was 2.82 ± 0.05 g/L. These results showed that the optimization method used is good, since it was possible to accurately validate the conditions obtained, achieving similar results to those found by the optimization model, and also 75% of removal of hemicellulose was revealed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kumdam HB, Murthy SN, Gummadi SN (2012) A statistical approach to optimize xylitol production by Debaryomyces nepalensis NCYC 3413 in Vitro. Food Sci Nutr 03:1027–1036. https://doi.org/10.4236/fns.2012.38136

    Article  Google Scholar 

  2. Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energy Rev 66:751–774. https://doi.org/10.1016/j.rser.2016.08.038

    Article  Google Scholar 

  3. Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sustain Energy Rev 66:631–653. https://doi.org/10.1016/j.rser.2016.07.015

    Article  Google Scholar 

  4. Mussatto SI, Roberto IC (2005) Acid hydrolysis and fermentation of brewer’s spent grain to produce xylitol. J Sci Food Agric 85:2453–2460. https://doi.org/10.1002/jsfa.2276

    Article  Google Scholar 

  5. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  Google Scholar 

  6. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  Google Scholar 

  7. Neureiter M, Danner H, Thomasser C, Saidi B, Braun R (2002) Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Appl Biochem Biotechnol 98–100:49–58. https://doi.org/10.1385/ABAB:98-100:1-9:49

    Article  Google Scholar 

  8. Venkateswar Rao L, Goli JK, Gentela J, Koti S (2016) Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresour Technol 213:299–310. https://doi.org/10.1016/j.biortech.2016.04.092

    Article  Google Scholar 

  9. Cheng K-K, Zhang J-A, Ling HZ, Ping WX, Huang W, Ge JP, Xu JM (2009) Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochem Eng J 43:203–207. https://doi.org/10.1016/j.bej.2008.09.012

    Article  Google Scholar 

  10. Mussatto SI (2016) Biomass pretreatment with acids. In: Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery. Elsevier, pp 169–185

  11. Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950. https://doi.org/10.1016/j.biortech.2006.07.047

    Article  Google Scholar 

  12. Aranda-Barradas JS, Garibay-Orijel C, Badillo-Corona JA, Salgado-Manjarrez E (2010) A stoichiometric analysis of biological xylitol production. Biochem Eng J 50:1–9. https://doi.org/10.1016/j.bej.2009.10.023

    Article  Google Scholar 

  13. Nigam P, Singh D (1995) Processes of fermentative production of Xylitol — a sugar substitute. Process Biochem 30:117–124. https://doi.org/10.1016/0032-9592(95)80001-8

    Article  Google Scholar 

  14. Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crops Prod 17:171–176. https://doi.org/10.1016/S0926-6690(02)00095-X

    Article  Google Scholar 

  15. Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Wlaker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403. https://doi.org/10.1016/j.cej.2009.10.061

    Article  Google Scholar 

  16. Nancib A (2017) Statistical optimization of dilute acid hydrolysis of wood sawdust for lactic acid production. J Appl Biotechnol Rep 4. https://doi.org/10.15406/jabb.2017.04.00093

  17. Moutta RO, Chandel AK, Rodrigues RCLB, Silva MB, Rocha GJM, Silva SS (2012) Statistical optimization of sugarcane leaves hydrolysis into simple sugars by dilute sulfuric acid catalyzed process. Sugar Tech 14:53–60. https://doi.org/10.1007/s12355-011-0116-y

    Article  Google Scholar 

  18. Banerji A, Balakrishnan M, Kishore VVN (2013) Low severity dilute-acid hydrolysis of sweet sorghum bagasse. Appl Energy 104:197–206. https://doi.org/10.1016/j.apenergy.2012.11.012

    Article  Google Scholar 

  19. Benjamin Y, Cheng H, Görgens JF (2014) Optimization of dilute sulfuric acid pretreatment to maximize combined sugar yield from sugarcane bagasse for ethanol production. Appl Biochem Biotechnol 172:610–630. https://doi.org/10.1007/s12010-013-0545-z

    Article  Google Scholar 

  20. Avci A, Saha BC, Dien BS, Kennedy GJ, Cotta MA (2013) Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production. Bioresour Technol 130:603–612. https://doi.org/10.1016/j.biortech.2012.12.104

    Article  Google Scholar 

  21. Akpinar O, Levent O, Bostanci Ş, Bakir U, Yilmaz L (2011) The optimization of dilute acid hydrolysis of cotton stalk in xylose production. Appl Biochem Biotechnol 163:313–325. https://doi.org/10.1007/s12010-010-9040-y

    Article  Google Scholar 

  22. Rafiqul ISM, Sakinah AMM, Karim MR (2014) Production of xylose from Meranti Wood Sawdust by dilute xcid hydrolysis. Appl Biochem Biotechnol 174:542–555. https://doi.org/10.1007/s12010-014-1059-z

    Article  Google Scholar 

  23. Rahman SHA, Choudhury JP, Ahmad AL, Kamaruddin AH (2007) Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresource Technology 98:554–559. https://doi.org/10.1016/j.biortech.2006.02.016

    Article  Google Scholar 

  24. Delfín-Ruíz ME, Calderón-Santoyo M, Ragazzo-Sánchez JA, Gómez-Rodríguez J, López-Zamora L, Aguilar-Uscanga MG (2020) Acid pretreatment optimization for xylose production from Agave tequilana Weber var. azul, Agave americana var. oaxacensis, Agave karwinskii, and Agave potatorum bagasses using a Box-Behnken design. Biomass Conv Bioref 10:949–958. https://doi.org/10.1007/s13399-019-00497-z

    Article  Google Scholar 

  25. Sluiter A, Hames B, Ruíz R, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass determination of structural carbohydrates and cignin in biomass. Technical Report. NREL/TP-510-42618 Revised August 2012.

  26. Delfin-Ruíz M E, Calderón-Santoyo M, Ragazzo-Sánchez J A, Gómez-Rodríguez J, Aguilar-Uscanga MG (2021) Ethanol production from enzymatic hydrolysates optimized of Agave tequilana Weber var. azul and Agave karwinskii bagasses. Bioenerg. Res. 14, 785–798 (2021). doi: 10.1007/s12155-020-10196-7

  27. Moran, MG (2018) Study of the saccharification of sugarcane and Agave angustifolia bagasses for fermentable sugar production. MSc. Thesis, UNIDA-Veracruz Technological Institute, Mexico.

  28. Tiburcio-León, FA (2019) Production of second-generation ethanol from corn stover. MSc. Thesis, UNIDA-Veracruz Technological Institute, Mexico.

  29. Brazdausks P, Vedernikovs N, Puke M, Kurma N (2014) Effect of the Acid hydrolysis temperature on the conversion of birch wood hemicelluloses into furfural, Key Eng. Mater 604:245–248. https://doi.org/10.4028/www.scientific.net/KEM.604.245

    Article  Google Scholar 

  30. Amdoun R, Khelifi L, Khelifi-Slaoui M, Amroune S, Asch M, Assaf-Ducrocq C, Gontier E (2018) The desirability optimization methodology; a tool to predict two antagonist responses in biotechnological systems: case of biomass growth and hyoscyamine content in elicited datura starmonium Hairy Roots. Iran J Biotechnol 16:11–19. https://doi.org/10.21859/ijb.1339

    Article  Google Scholar 

  31. Sivaramakrishnan K, Ravikumar P (2014) Optimization of operational parameters on performance and emissions of a diesel engine using biodiesel. Int J Environ Sci Technol 11:949–958. https://doi.org/10.1007/s13762-013-0273-5

    Article  Google Scholar 

  32. de Souza AP, Leite DCC, Pattathil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenerg Res 6:564–579. https://doi.org/10.1007/s12155-012-9268-1

    Article  Google Scholar 

  33. Haghdan S, Renneckar S, Smith GD (2016) Sources of lignin. In: Lignin in Polymer Composites. Elsevier, pp 1–11

  34. Carrillo-Nieves D, Rostro Alanís MJ, de la Cruz QR, Ruiz HA, Iqalb HMN, Parra-Saldívar R (2019) Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renew Sustain Energy Rev 102:63–74. https://doi.org/10.1016/j.rser.2018.11.031

    Article  Google Scholar 

  35. Alexander RA, Innasimuthu GM, Rajaram SK, Jeganathan PM, Somasundarar SC (2020) Process optimization of microwave-assisted alkali pretreatment for enhanced delignification of Prosopis juliflora biomass. Environ Prog Sustain Energy 39:13289. https://doi.org/10.1002/ep.13289

    Article  Google Scholar 

  36. Bikbulatov ES, Stepanova IE (2011) Harrington’s desirability function for natural water quality assessment. Russ J Gen Chem 81:2694–2704. https://doi.org/10.1134/S1070363211130111

    Article  Google Scholar 

  37. Demirel F, Germec M, Coban HB, Turhan I (2018) Optimization of dilute acid pretreatment of barley husk and oat husk and determination of their chemical composition. Cellulose 25:6377–6393. https://doi.org/10.1007/s10570-018-2022-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the economic support from the National Council of Science and Technology (CONACyT), México, for the scholarship granted to Armando Varilla-Mazaba.

Author information

Authors and Affiliations

Authors

Contributions

Varilla-Mazaba A.: investigation, methodology, conceptualization, and writing. Ragazzo-Sánchez J.A.: supervision, methodology, analyses, and review, editing. Calderón-Santoyo M: methodology, conceptualization, and review. del Moral S.: methodology. Gómez-Rodríguez J.: methodology and review; Aguilar-Uscanga M.G.: Methodology, conceptualization, supervision, writing, and review and editing.

Corresponding author

Correspondence to M. G. Aguilar-Uscanga.

Ethics declarations

Ethical approval

All authors declare that they give the consent to participate and publish this work.

Research involving human participants and/or animals

No applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varilla-Mazaba, A., Raggazo-Sánchez, J.A., Calderón-Santoyo, M. et al. Multi-response optimization of acid hydrolysis in sugarcane bagasse to obtain high xylose concentration. Biomass Conv. Bioref. 14, 173–181 (2024). https://doi.org/10.1007/s13399-022-02404-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02404-5

Keywords

Navigation