Skip to main content
Log in

Efficient degradation of methylene blue dye by catalytic oxidation using the Na8Nb6O19·13H2O/H2O2 system

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Na8Nb6O19·13H2O particles were synthesized by a simple hydrothermal method. The catalysts were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and thermogravimetric and differential scanning (TG-DSC). The XRD and TG-DSC analyses indicated that Na8Nb6O19·13H2O was an intermediate hexaniobate during the preparation of NaNbO3 powders. Methylene blue (MB) dye degradation using Na8Nb6O19·13H2O/H2O2, Nb2O5/H2O2 and NaNbO3/H2O2 systems were investigated, respectively. Among the catalytic oxidation systems, Na8Nb6O19· 13H2O showed the highest activity for degradation of MB in the presence of H2O2. The results indicated that the dye degradation efficiency could be 93.5% at 30 °C after 60 min in the presence of the Na8Nb6O19·13H2O/H2O2 system. It was also found that the degradation of MB over the catalytic systems followed pseudo-first-order kinetics, and the degradation rate was 0.02376 min−1 in the Na8Nb6O19·13H2O/H2O2 system, which was higher than that in the Nb2O5/H2O2 and NaNbO3/H2O2 systems. A possible mechanism for MB catalytic oxidation degradation using the Na8Nb6O19·13H2O/H2O2 system was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Wong, W. C. Chu, D. S. Sun, H. S. Huang, J. H. Chen, P. J. Tsai, N. T. Lin, M. S. Yu, S. F. Hsu, S. L. Wang and H. H. Chang, Appl. Environ. Microbiol., 72, 6111 (2006).

    Article  CAS  Google Scholar 

  2. I.K. Konstantinou and T. A. Albanis, Appl. Catal., B: Environ., 49, 1 (2004).

    Article  CAS  Google Scholar 

  3. J. Tang, Z. Zou and J. Ye, Chem. Mater., 16, 1644 (2004).

    Article  CAS  Google Scholar 

  4. P. Baldrian, V. Merhautová, J. Gabriel, F. Nerud, P. Stopka, M. Hrubý and M. J. Benes, Appl. Catal., B: Environ., 66, 258 (2006).

    Article  CAS  Google Scholar 

  5. S. Karcher, A. Kornmuller and M. Jekel, Water Res., 36, 4717 (2002).

    Article  CAS  Google Scholar 

  6. A. H. Gemeay, I. A. Mansour, R.G. El-Sharkawy and A. B. Zaki, J. Mol. Catal. A: Chem., 193, 109 (2003).

    Article  CAS  Google Scholar 

  7. R.C. C. Costa, F. C. C. Moura, J. D. Ardisson, J. D. Fabris and R. M. Lago, Appl. Catal., B: Environ., 83, 131 (2008).

    Article  CAS  Google Scholar 

  8. J.Y. Feng, X. J. Hu, P. L. Yue, H.Y. Zhu and G. Q. Lu, Water Res., 37, 3776 (2003).

    Article  CAS  Google Scholar 

  9. S. Chou and C. Huang, Chemosphere, 38, 2719 (1999).

    Article  CAS  Google Scholar 

  10. W. F. de Souza, I. R. Guimarães, L. C. A. Oliveira, M. C. Guerreiro, A. L. N. Guarieiro and K. T.G. Carvalho, J. Mol. Catal. A: Chem., 278, 145 (2007).

    Article  Google Scholar 

  11. M. Nyman, T. M. Anderson and P. P. Provencio, Cryst. Growth Des., 9, 1036 (2009).

    Article  CAS  Google Scholar 

  12. I. P. Roof, S. Park, T. Vogt, V. Rassolov, M. D. Smith, S. Omar, J. Nino and H. C. zur Loye, Chem. Mater., 20, 3327 (2008).

    Article  CAS  Google Scholar 

  13. Q. P. Ding, Y. P. Yuan, X. Xiong, R. P. Li, H. B. Huang, Z. S. Li, T. Yu, Z.G. Zou and S.G. Yang, J. Phys. Chem. C, 112, 18846 (2008).

    CAS  Google Scholar 

  14. H. Muthurajan, H. H. Kumar, V. Samuel, U. N. Gupta and V. Ravi, Ceram. Int., 34, 671 (2008).

    Article  CAS  Google Scholar 

  15. G. Q. Li, T. Kako, D. F. Wang, Z.G. Zou and J. H. Ye, J. Solid State Chem., 180, 2845 (2007).

    Article  CAS  Google Scholar 

  16. Y. F. Chang, Z. P. Yang, X. L. Chao, Z. H. Liu and Z. L. Wang, Mater. Chem. Phys., 111, 195 (2008).

    Article  CAS  Google Scholar 

  17. E. Atamanik and V. Thangadurai, J. Phys. Chem. C, 113, 4648 (2009).

    Article  CAS  Google Scholar 

  18. J. T. Han, D. Q. Liu, S. H. Song, Y. Kim and J. B. Goodenough, Chem. Mater., 21, 4753 (2009).

    Article  CAS  Google Scholar 

  19. K. Katsumata, C. E. J. Cordonier, T. Shichi and A. Fujishima, J. Am. Chem. Soc., 131, 3856 (2009).

    Article  CAS  Google Scholar 

  20. T.Y. Ke, H. A. Chen, H. S. Sheu, J.W. Yeh, H. N. Lin, C.Y. Lee and H. T. Chiu, J. Phys. Chem. C, 112, 8827 (2008).

    Article  CAS  Google Scholar 

  21. C. D. Ling, M. Avdeev, R. Kutteh, V. V. Kharton, A. A. Yaremchenko, S. Fialkova, N. Sharma, R. B. Macquart, M. Hoelzel and M. Gutmann, Chem. Mater., 21, 3853 (2009).

    Article  CAS  Google Scholar 

  22. L. C. A. Oliveira, M. Gonçalves, M. C. Guerreiro, T. C. Ramalho, J. D. Fabris, M. C. Pereira and K. Sapag, Appl. Catal., A: Gen., 316, 117 (2007).

    Article  CAS  Google Scholar 

  23. D. Bayot, B. Tinant and M. Devillers, Catal. Today, 78, 439 (2003).

    Article  CAS  Google Scholar 

  24. L. C Passoni, M. R. H. Siddiqui, A. Steiner and I. Kozhevnikov, J. Mol. Catal. A: Chem., 153, 103 (2000).

    Article  CAS  Google Scholar 

  25. O. C. Compton and F. E. Osterloh, J. Phys. Chem. C, 113, 479 (2009).

    Article  CAS  Google Scholar 

  26. A. Feliczak, K. Walczak, A. Wawrzynczak and I. Nowak, Catal. Today, 140, 23 (2009).

    Article  CAS  Google Scholar 

  27. A. C. Silva, D. Q. L. Oloveira, L. C. A. Oliveira, A. S. Anastacio, T. C. Ramalho and J. H. Lopes, Appl. Catal., A: Gen., 357, 79 (2009).

    Article  CAS  Google Scholar 

  28. S.Y. Wu, W. Zhang and X. M. Chen, J. Mater. Sci. Mater. Electron., 21, 450 (2010).

    Article  CAS  Google Scholar 

  29. S. Lanfredi, L. Dessemond and A. C. Martins Rodrigues, J. Eur. Ceram. Soc., 20, 983 (2000).

    Article  CAS  Google Scholar 

  30. H. Zhu, Z. Zhen, X. Gao, Y. Huang, Z. Yan, J. Zou, H. Yin, Q. Zou, S. H. Kable, J. Zhao, Y. Xi, W. N. Martens and R. L. Frost, J. Am. Chem. Soc., 128, 2373 (2006).

    Article  CAS  Google Scholar 

  31. S. J. Yang, H. P. He, D. Q. Wu, D. Chen, X. L. Liang, Z. H. Qin, M. D. Fan, J. X. Zhu and P. Yuan, Appl. Catal., B: Environ., 89, 527 (2009).

    Article  CAS  Google Scholar 

  32. A. Lopez, A. Bozzi, G. Mascolo and J. Kiwi, J. Photochem. Photobio., A: Chem., 156, 121 (2003).

    Article  CAS  Google Scholar 

  33. J. Deng, J. Jiang, Y. Zhang, X. Lin, C. Du and Y. Xiong, Appl. Catal., B: Environ., 84, 468 (2008).

    Article  CAS  Google Scholar 

  34. Y. N. Kozlov, G. V. Nizova and G. B. Shul’pin, J. Mol. Catal. A: Chem., 227, 247 (2005).

    Article  CAS  Google Scholar 

  35. R. Z. Khaliullin, A. T. Bell and M. Head-Gordon, J. Phys. Chem. B, 109, 17984 (2005).

    Article  CAS  Google Scholar 

  36. T. Shishido, T. Miyatake, K. Teramura, Y. Hitomi, H. Yamashita and T. Tanaka, J. Phys. Chem. C, 113, 18713 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Xu, H., Li, H. et al. Efficient degradation of methylene blue dye by catalytic oxidation using the Na8Nb6O19·13H2O/H2O2 system. Korean J. Chem. Eng. 28, 1126–1132 (2011). https://doi.org/10.1007/s11814-010-0471-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0471-5

Key words

Navigation