Skip to main content
Log in

Immobilization and stabilization of Pseudomonas aeruginosa SRT9 lipase on tri(4-formyl phenoxy) cyanurate

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Lipase was extracted and purified from Pseudomonas aeruginosa SRT9. Culture conditions were optimized and highest lipase production amounting to 147.36 U/ml was obtained after 20 h incubation. The extracellular lipase was purified on Mono QHR5/5 column, resulting in a purification factor of 98-fold with specific activity of 12307.81 U/mg. Lipase was immobilized on tri (4-formyl phenoxy) cyanurate to form Schiff’s base. An immobilization yield of 85% was obtained. The native and immobilized lipases were used for catalyzing the hydrolysis of olive oil in aqueous medium. Comparative study revealed that immobilized lipase exhibited a shift in optimal pH from 6.9 (free lipase) to 7.5 and shift in optimal temperature from 55 °C to 70 °C. The immobilized lipase showed 20–25% increase in thermal stability and retained 75% of its initial activity after 7 cycles. It showed good stability in organic solvents especially in 30% acetone and methanol. Enzyme activity was decreased by ∼60% when incubated with 30% butanol. The kinetic studies revealed increase in K M value from 0.043 mM (native) to 0.10 mM for immobilized lipase. It showed decrease in the V max of immobilized enzyme (142.8 μmol min−1 mg−1), suggesting enzyme activity decrease in the course of covalent binding. The immobilized lipase retained its initial activity for more than 30 days when stored at 4 °C in Tris-HCl buffer pH 7.0 without any significant loss in enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sjtajer, I. Maliszewska and J. Wierczorek, Enzyme Microb. Technol., 10, 492 (1988).

    Article  Google Scholar 

  2. M. R. Aires-Barros, M. A. Taipa, J. Cabral, P. Wooley and S. B. Peterson, Eds., Cambridge University Press (1994).

  3. A. Ionita, N. Moscovici, C. Popa, A. Vamanu, A. Popa and L. Dinu, J. Mol. Catal. B: Enzymatic., 3, 147 (1997).

    Article  CAS  Google Scholar 

  4. T. Miura and T. Yamane, Biosci. Biotechnol. Biochem., 61, 125 (1997).

    Article  Google Scholar 

  5. W. Stöcklein, H. Sjtajer, U, Menge and R. D. Schmid, Biochim. Biophys Acta, 1168, 181 (1993).

    Google Scholar 

  6. K. E. Jaeger, K. Liebeton, A. Zonta, K. Schimossek and M.T. Reetz, Appl. Microbiol. Biotechnol., 46, 99 (1996).

    Article  CAS  Google Scholar 

  7. C. C. Akoh, Biotechnol. Lett., 15, 949 (1993).

    Article  CAS  Google Scholar 

  8. P. A. Claon and C. C. Akoh, Enzyme Microb. Technol., 16, 835 (1994).

    Article  CAS  Google Scholar 

  9. A. Bertinotti, G. Carrea, G. Ottolina and S. Riva, Tetrahedron., 50, 13165 (1994).

    Article  CAS  Google Scholar 

  10. H. Frykman, N. Ohrner, T. Norin and K. Hult, Tetrahedron. Lett., 34, 1367 (1993).

    Article  CAS  Google Scholar 

  11. A. R. Yahya, W.A. Anderson and M. Moo-Young, Enzyme Microb. Technol., 23, 438 (1998).

    Article  CAS  Google Scholar 

  12. A. L. Margolin, Enzyme Microb. Technol., 15, 266 (1993).

    Article  CAS  Google Scholar 

  13. R. Azerad, Bull. Soc. Chim. Fr., 132, 17 (1995).

    CAS  Google Scholar 

  14. S. P. Colowick, N.O. Kaplan and K. Mosbach, Eds., Methods in Enzymology vol 137, Academic Press Inc. (1988).

  15. T. Yamane, T. Funada and S. Ishida, J. Ferment. Technol., 60, 517 (1982).

    CAS  Google Scholar 

  16. J. Lavayre and J. Baratti, Biotechnol. Bioeng., 24, 1007 (1982).

    Article  CAS  Google Scholar 

  17. C. Otero, J. M. Guisan and A. Ballesteros, Appl. Biochem. Biotechnol., 19, 163 (1988).

    Article  CAS  Google Scholar 

  18. J. F. Shaw, R. C. Chang, F. F. Wang and Y. J. Wang, Biotechnol. Bioeng., 35, 132 (1990).

    Article  CAS  Google Scholar 

  19. R. Goldman, O. Kadam, I. H. Silman, S. R. Caplan and E. Katchalski, J. Biochemistry, 64, 486 (1968).

    Article  Google Scholar 

  20. J. M. Moreno and J.V. Sinisterra, J. Mol. Catal., 93, 357 (1994).

    Article  CAS  Google Scholar 

  21. M.B. Stark and K. Holmberg, Biotechnol. Bioeng., 34, 942 (1989).

    Article  CAS  Google Scholar 

  22. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, J. Biol. Chem., 193, 265 (1951).

    CAS  Google Scholar 

  23. C. Mateo, J. M. Palomo, M. Fuentes, L. Betancor, V. Grazu, Fernando, L. Gallego, B. C. C. Pessela, A. Hidalgo, G. F. Lorente, R. F. Lafuente and J. M. Guisan, Enzyme Microb. Technol., 39, 274 (2006).

    Article  CAS  Google Scholar 

  24. M. P. Deutscher, Guide to protein purification: Method Enzymol, Academic Press, New York, 182 (1990).

    Google Scholar 

  25. R. R. Srinivasa, P. S. Borkar, C. N. Khobragade and A. D. Sagar, Enzyme Microb. Technol., 39, 958 (2006).

    Article  Google Scholar 

  26. B. P. Kavitake, V. P. Patil and M. M. Salunkhe, Bull. Soc. Chim. Belg., 104, 675 (1995).

    Article  CAS  Google Scholar 

  27. E. Stahl and B.U. Kalten, Thinlayer chromatography a laboratory hand book, Academic Press, NewYork (1995).

    Google Scholar 

  28. R. N. Gacche, V. S. Ghole, C.N. Khobragade and A. D. Sagar, J. Sci. Ind. Res., 61, 621 (2002).

    CAS  Google Scholar 

  29. C. M. F. Soares, H. F. de Castro, F. F. Moraes and G. M. Zanin, Appl. Biochem. Biotechnol., 79, 745 (1999).

    Article  Google Scholar 

  30. M. Kordel, B. Hofmann and D. Schomburg, J. Bacteriol., 173, 4836 (1991).

    CAS  Google Scholar 

  31. S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D. J. Lipman, Nucleic Acids Research, 25, 3389 (2007).

    Article  Google Scholar 

  32. R. A. Copeland, Enzymes: a practical introduction to structure, mechanism and data analysis, New York, VCH Publisher INC, New York (1996).

    Google Scholar 

  33. B. K. Yang and J. P. Chen, J. Food Sci., 2, 424 (1994).

    Article  Google Scholar 

  34. M. N. Gupta, Thermostability of enzymes. New Delhi, India: Narosa Publishing House (1993).

    Google Scholar 

  35. K. Martinek, A. M. Klibanov, V. S. Goldmacher and I.V. Berezen, BiochimBiophys, 485, 1 (1997).

    Google Scholar 

  36. A. M. Klibanov, Science, 219, 722 (1983).

    Article  CAS  Google Scholar 

  37. A. Bastida, P. Sabuqillo, P. Armisen, R. F. Lafuente, J. Huguet and J.M. Guisan, Biotechnol. Bioeng., 58, 486 (1998).

    Article  CAS  Google Scholar 

  38. Z. Knezevic, L. Mojovic and B. Adnadjevic, Enzyme Microb. Technol., 22, 275 (1998).

    Article  CAS  Google Scholar 

  39. C. Laane, S. Boeren, K. Vos and C. Veeger, Biotechnol. Bioeng., 30, 81 (1986).

    Article  Google Scholar 

  40. L. A. Gorman and J. S. Dordick, Biotechnol. Bioeng., 39, 392 (1992).

    Article  CAS  Google Scholar 

  41. J.C. Wu, G. F. Zhang and Z. M. He, Biotechnol. Lett., 23, 211 (2001).

    Article  CAS  Google Scholar 

  42. D. Yang and S. S. Rhee, Biotechnol. Bioeng., 40, 478 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borkar Prita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prita, B., Chandrahas, K., Venkata Ramana, P. et al. Immobilization and stabilization of Pseudomonas aeruginosa SRT9 lipase on tri(4-formyl phenoxy) cyanurate. Korean J. Chem. Eng. 28, 867–874 (2011). https://doi.org/10.1007/s11814-010-0431-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0431-0

Key words

Navigation