Skip to main content
Log in

Catalytic process for decolorizing yellow plume

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Yellow-colored exhaust gas streams from internal engines or gas turbines, frequently referred to as “yellow plume,” contain nitrogen dioxide (NO2) at concentrations as low as 15 ppm. The process developed in this work for decolorizing the yellow plume is based on reduction of NO2 to NO utilizing a combination of a Pt catalyst and a reducing agent. A stoichiometric excess of carbon monoxide, diesel oil, methanol or ethanol were used as reducing agents. Depending on the type of the reductant, the active temperature window of NO2 reduction was varied with methanol and CO being active at lower temperatures and ethanol and diesel oil at higher temperatures. By changing the Pt loading of the catalysts the active temperature window of NO2 reduction was also changed, higher loading Pt catalysts being active at lower temperatures. This scheme of NO2 reduction process was verified in a pilot-scale test with the real exhaust gas from the gas turbine power plant, showing 96% of NO2 reduction at the stack temperatures of 102–123 °C and at space velocities of 28,000–95,000 h−1 with inherent CO in the exhaust gas as the reducing agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Feitelberg and S. M. J. Correa, Eng. Gas Turbines and Power, 122, 287 (2000).

    Article  CAS  Google Scholar 

  2. J. A. Miller and C. T. Bowman, Prog. Energy Combust. Sci., 15, 287 (1989).

    Article  CAS  Google Scholar 

  3. J.W. Hunderup and R. J. Roby, Transactions of the ASME, 118, 756 (1996).

    Article  CAS  Google Scholar 

  4. R. A. Searles, Chemistry and Industry, 16, 895 (1974).

    Google Scholar 

  5. R. D. Bell, US Patent, 5,022,226 (1991).

  6. Y. Cai and U. S. Ozkan, Appl. Catal., 78, 241 (1991).

    Article  CAS  Google Scholar 

  7. M. Wallin, C. J. Karlsson, M. Skoglundh and A. Palmqvist, J. Catal., 218, 354 (2003).

    Article  CAS  Google Scholar 

  8. R. Burch, J. P. Breen and F. C. Meunier, Appl. Catal. B: Environmental, 39, 283 (2002).

    Article  CAS  Google Scholar 

  9. A. B. Mhadeshwar, B. H. Winkler, B. Eiteneer and D. Hancu, Appl. Catal. B: Environ., 89, 229 (2009).

    Article  CAS  Google Scholar 

  10. O. Okada, T. Tabata, M. Kokitsu, H. Ohtsuka, L. M. F. Sabatino and G. Bellussi, Appl. Surf. Sci., 121/122, 267 (1997).

    Article  CAS  Google Scholar 

  11. Y. Traa, B. Burger and J. Weitkamp, Micropor. Mesopor. Mater., 30, 3 (1999).

    Article  CAS  Google Scholar 

  12. A. Subbiah, B. K. Cho, R. J. Blint, A. Gujar, G. L. Price and J. E. Yie, Appl. Catal. B: Environ., 42, 155 (2003).

    Article  CAS  Google Scholar 

  13. H. He and Y. Yu, Catal. Today, 100, 37 (2005).

    Article  CAS  Google Scholar 

  14. N. Macleod and R. M. Lambert, Appl. Catal. B: Environ., 35, 269 (2002).

    Article  CAS  Google Scholar 

  15. A. Wolf and F. Schuth, Appl. Catal. A: Gen., 226, 1 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heon Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J.H., Yang, JI., Chun, D.H. et al. Catalytic process for decolorizing yellow plume. Korean J. Chem. Eng. 28, 418–423 (2011). https://doi.org/10.1007/s11814-010-0401-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0401-6

Key words

Navigation