Skip to main content

Advertisement

Log in

Investigations on the decomposition of AdBlue urea in the liquid phase at low temperatures by an electrochemically induced pH shift

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Ammonia-based selective catalytic reduction (SCR) systems are the most widely used technology for reduction of nitrogen oxide emissions from lean-burn engines such as diesel engines. However, at low exhaust temperatures, the SCR process is limited by difficulties in the decomposition of the ammonia precursor urea, which is carried on-board using an aqueous solution “AdBlue”. In this study, the decomposition of AdBlue urea induced by electrical current and the resulting associated pH shifts were investigated in a divided cell configuration in the liquid phase. The decomposition was found to be favored in both electrochemical compartments, anodic and cathodic, at temperatures of 60–80 °C compared to a reference without electrochemical treatment. In addition to the determination of ammonia contents using an ammonia sensor, IC/HPLC analyses were carried out for each sample. Different side products such as biuret, nitrate, cyanuric acid, ammelide, and others were formed. In the anodic compartment, nitrate formation could be observed due to oxidation of ammonia at the electrode surface.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li J, Chang H, Ma L, Hao J, Yang RT (2011) Catal Today 175:147

    Article  CAS  Google Scholar 

  2. Rattalma M (2017) The Dieselgate. Springer, New York

    Book  Google Scholar 

  3. Koch T (2018) Diesel-eine sachliche Bewertung der aktuellen Debatte. Springer, Wiesbaden

    Book  Google Scholar 

  4. Tschöke H, Mollenhauer K, Maier R (2018) Handbuch Dieselmotoren. Springer, Wiesbaden

    Book  Google Scholar 

  5. Kim YJ, Kwon HJ, Heo I, Nam IS, Cho BK, Choung JW, Cha MS, Yeo GK (2012) Appl Catal B-Environ 126:9

    Article  CAS  Google Scholar 

  6. Neußer HJ, Kahrstedt J, Dorenkamp R, Jelden H (2013) Motortechnische Zeitschrift 74:440

    Article  Google Scholar 

  7. Braun P, Gebhard J, Matysik FM, Rabl HP (2018) Chem Ing Tech 90:762

    Article  CAS  Google Scholar 

  8. Johnson TV (2015) Int J Engines 8:1152

    Article  Google Scholar 

  9. Guan B, Zhan R, Lin H, Huang Z (2014) Appl Therm Eng 66:395

    Article  CAS  Google Scholar 

  10. Thirupathi B, Smirniotis PG (2012) J Catal 288:74

    Article  CAS  Google Scholar 

  11. Wan Y, Zhao W, Tang Y, Li L, Wang H, Cui Y, Gu J, Li Y, Shi J (2014) Appl Catal B-Environ 148–149:114

    Article  CAS  Google Scholar 

  12. Qiu L, Meng J, Pang D, Zhang C, Ouyang F (2015) Catal Lett 145:1500

    Article  CAS  Google Scholar 

  13. International ISO-Standard: Diesel engines-NOx reduction agent AUS 32: ISO 22241-1:2006 (2006)

  14. Bernhard AM, Peitz D, Elsener M, Schildhauer T, Kröcher O (2013) Catal Sci Technol 3:942

    Article  CAS  Google Scholar 

  15. Hamada H, Haneda M (2012) Appl Catal A-Gen 421–422:1

    Article  CAS  Google Scholar 

  16. Roppertz A, Füger S, Kureti S (2017) Top Catal 60:199

    Article  CAS  Google Scholar 

  17. Blakeley RL, Treston A, Andrews RK, Zerner B (1982) J Am Chem Soc 104:612

    Article  CAS  Google Scholar 

  18. Alexandrova AN, Jorgensen WL (2007) J Phys Chem B 111:720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Laidler KJ, Hoare JP (1950) J Am Chem Soc 72:2489

    Article  CAS  Google Scholar 

  20. Panyachariwat N, Steckel H (2014) J Cosmet Sci 65:187

    CAS  PubMed  Google Scholar 

  21. Lu F, Botte GG (2017) Electrochim Acta 246:564

    Article  CAS  Google Scholar 

  22. Schranck A, Marks R, Yates E, Doudrick K (2018) Environ Sci Technol 52:8638

    Article  CAS  PubMed  Google Scholar 

  23. Singh RK, Schechter A (2018) Electrochim Acta 278:405

    Article  CAS  Google Scholar 

  24. Boggs BK, King RL, Botte GG (2009) Chem Commun 32:4859

    Article  CAS  Google Scholar 

  25. Ye K, Wang G, Cao D, Wang G (2018) Top Curr Chem 376:42

    Article  CAS  Google Scholar 

  26. Senthilkumar N, Kumar GG, Manthiram A (2018) Adv Energy Mater 8:1702207

    Article  CAS  Google Scholar 

  27. Zhu X, Dou X, Dai J, An X, Guo Y, Zhang L, Tao S, Zhao J, Chu W, Cheng Zeng X, Wu C, Xie Y (2016) Angew Chem Int Ed 55:12465

    Article  CAS  Google Scholar 

  28. Koebel M, Elsener M (1995) J Chromatogr A 689:164

    Article  CAS  Google Scholar 

  29. Bernhard AM, Czekaj I, Elsener M, Wokaun A, Kröcher O (2011) J Phys Chem A 115:2581

    Article  CAS  PubMed  Google Scholar 

  30. Peitz D, Bernhard AM, Mehring M, Elsener M, Kröcher O (2013) Chem Ing Tech 85:625

    Article  CAS  Google Scholar 

  31. Bernhard AM, Peitz D, Elsener M, Wokaun A, Kröcher O (2012) Appl Catal B-Environ 115(116):129

    Article  CAS  Google Scholar 

  32. Zheng G, Fila A, Kotrba A, Floyd R (2010) SAE Technical Paper 2010-01-1941

  33. Strots VO, Santhanam S, Adelman BJ, Griffin GA, Derybowski EM (2010) SAE Int J Fuels Lubr 2:283

    Article  CAS  Google Scholar 

  34. Trigueros PP, Sagues F, Claret J (1994) Phys Rev E 49:4328

    Article  CAS  Google Scholar 

  35. Lin SH, Wu L (1996) Wat Res 30:715

    Article  CAS  Google Scholar 

  36. Schaber PM, Colson J, Higgins S, Thielen D, Anspach B, Brauer J (2004) Thermochim Acta 424:131

    Article  CAS  Google Scholar 

  37. Lecompte M, Obiols J, Cherel J, Raux S (2017) SAE Int J Fuels Lubr 10:864

    Article  CAS  Google Scholar 

  38. Belson DJ, Strachan AN (1982) Chem Soc Rev 11:41

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank-Michael Matysik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, P., Durner, B., Rabl, HP. et al. Investigations on the decomposition of AdBlue urea in the liquid phase at low temperatures by an electrochemically induced pH shift. Monatsh Chem 150, 1633–1641 (2019). https://doi.org/10.1007/s00706-019-02406-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-02406-6

Keywords

Navigation