Skip to main content

Advertisement

Log in

Biodegradation of monoethanolamine in aerobic and anoxic conditions

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abatract

Monoethanolamine (MEA) is widely used in many industries and its proper treatment is important for protecting the water environment. As MEA contains an amine group, nitrogen removal by nitrification/denitrification as well as biodegradation of MEA is necessary for wastewater treatment. In this study the effects of adaptation and inhibition of MEA on biological degradation, and the removal of amine were investigated in a laboratory scale sequencing batch reactor (SBR). In addition, the denitrification characteristics of nitrate, and nitrite with MEA as the electron donor, were compared to the other electron donor (acetate). In the aerobic SBR, the removal efficiency of 9,000 mg/L MEA reached 92% at the hydraulic retention time (HRT) of 10.5 days. Ammonium hydrolyzed from the MEA was nitrified after 8 weeks from the start-up showing that adaptation time is needed for nitrification. Non-linear curve fitting of the specific MEA biodegradation gave the maximum specific activity (V max ), the half saturation constant (K s ), and the inhibition constant (K i ) of 2.81 g/(g VSS·d), 102.1 mg/L, and 1149.6 mg/L, respectively. Batch denitrification showed that MEA is a competitive electron donor to acetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Gallagher, J. A. Sorenson, S. S. Philbrick, R. Z. Knutson and D. Chollak, Biol. Treat. Wastewater, 5, 269 (1995).

    CAS  Google Scholar 

  2. B. J. Hwang, S. W. Park, D. W. Park, K. J. Oh and S. S. Kim, Korean J. Chem. Eng., 26, 775 (2009).

    Article  CAS  Google Scholar 

  3. S. J. Park, H. Y. Shin, B. M. Min, A. Cho and J. S. Lee, Korean J. Chem. Eng., 26, 189 (2009).

    Article  CAS  Google Scholar 

  4. C. J. Kim and G. Sartori, Int. J. Chem. Kinetics, 16, 1257 (1984).

    Article  CAS  Google Scholar 

  5. O. F. Dawodu and A. Meisen, Ind. Eng. Chem. Res., 33, 480 (1994).

    Article  CAS  Google Scholar 

  6. T. K. Chen, C. H. Ni and J. N. Chen, J. Environ. Sci. and Health Part A, 38, 2157 (2003).

    Article  CAS  Google Scholar 

  7. S. Bakalova, V. Mincheva, A. Doycheva, V. Groudeva and R. Dimkov, Biotechnol. Biotechnol. EQ, 22, 716 (2003).

    Google Scholar 

  8. A. W. Ndegwa, R. C. K. Wong, A. Chu, L. R. Bentely and S. R. D. Lunn, J. Environ. Eng. Sci., 3, 137 (2004).

    Article  CAS  Google Scholar 

  9. S. B. Hawthorne, A. Kubatova, J. R. Gallagher, J. A. Sorensen and D. J. Miller, Environ. Sci. Technol., 39, 3639 (2005).

    Article  CAS  Google Scholar 

  10. J. T. Hyun, I. H. Rhee, S. H. Kwon, D. J. Kim and D. C. Cho, Kor. J. Biotechnol. Bioeng., 22, 157 (2007).

    Google Scholar 

  11. J. S. Knapp, N. D. Jenkey and C. C. Townsley, Biodegradation, 7, 183 (1996).

    Article  CAS  Google Scholar 

  12. B. Lai and W. Shieh, Water Res., 30, 2530 (1996).

    Article  CAS  Google Scholar 

  13. C. N. Lei, L. M. Whang and H. L. Lin, Wat. Sci. Tech., 58, 1001 (2008).

    Article  CAS  Google Scholar 

  14. APHA/AWWA/WEF, Standard methods for the examination of water and wastewater, 21st Ed., Washington DC (2005).

  15. G. A. Hill and C. W. Robinson, Biotech. Bioeng., 17, 1599 (1975).

    Article  CAS  Google Scholar 

  16. Water Environment Federation, Biological and chemical systems for nutrient removal, WEF, Alexandria (1998).

    Google Scholar 

  17. M. Sandin, S. Allenmark and L. Edebo, FEMS Microbiol. Lett., 91, 147 (1992).

    Article  CAS  Google Scholar 

  18. K. Verscheren, Handbook of environmental data on organic chemicals, 4th Ed., Wiley, New York (2001).

    Google Scholar 

  19. K. Gernaey, L. Verschuere, L. Luyten and W. Verstraete, Water Environ. Res., 69, 1163 (1997).

    Article  CAS  Google Scholar 

  20. O. Mrklas, A. Chu, S. Lunn and L. R. Bentley, Wat. Air Soil Poll., 159, 249 (2004).

    Article  CAS  Google Scholar 

  21. T. J. Goreau, W. A. Kaplan, S. C. Wofsy, M. B. McElroy, F. W. Valois and S. W. Watson, Appl. Environ. Microbiol., 40, 526 (1980).

    CAS  Google Scholar 

  22. A. C. Anthonisen, R. C. Loehr, T. B. S. Prakasam and E. G. Srinath, J. Wat. Poll. Cont. Fed., 48, 835 (1976).

    CAS  Google Scholar 

  23. B. H. Kaplan and E. R. Stadtman, J. Biol. Chem., 243, 1787 (1968).

    CAS  Google Scholar 

  24. K. Pochana and J. Keller, Wat. Sci. Technol., 39, 61 (1999).

    CAS  Google Scholar 

  25. B. E. Rittmann and P. L. McCarty, Environmental biotechnology: Principles and applications, McGraw-Hill, New York (2001).

    Google Scholar 

  26. P. L. McCarty, Biotechnol. Bioeng., 97, 377 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DJ., Lim, Y., Cho, D. et al. Biodegradation of monoethanolamine in aerobic and anoxic conditions. Korean J. Chem. Eng. 27, 1521–1526 (2010). https://doi.org/10.1007/s11814-010-0285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0285-5

Key words

Navigation