Skip to main content
Log in

Attrition behavior of fine particles in a fluidized bed with bimodal particles: Influence of particle density and size ratio

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To process the solid particulates in fluidized bed and slurry phase reactors, attrition is an inevitable consequence and is therefore one of the preliminary parameters for the catalyst design. In this paper, the mechanical degradation propensity of the zeolite catalysts (particles) was investigated in a bimodal distribution environment using a Gas Jet Attrition — ASTM standard fluidized bed test (D-5757). The experimentation was conducted in order to explore parameters affecting attrition phenomena in a bimodal fluidization. In a bimodal fluidization system, two different types of particles are co-fluidized isothermally. The air jet attrition index (AJI) showed distinct increases in the attrition rate of small particles in a bimodal fluidization environment under standard operating conditions, in comparison with single particle. A series of experiments were conducted using particles of various sizes, with large particles of different densities and sizes. Experimental results suggest that the relative density and particle size ratio have a significant influence on attrition behavior during co-fluidization. Therefore a generalized relationship has been drawn using Gwyn constants; those defined material properties of small particles. Moreover, distinct attrition incremental phenomenon was observed during co-fluidization owing to the change in collision pattern and impact, which was associated with relative particle density and size ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Particle Attrition, British Materials Handling Board. Trans. Tech. Publications, Germany (1987).

  2. D. L. Blair and A. Kudrolli, Phys. Rev. E., 67, 41301 (2003).

    Article  Google Scholar 

  3. J.M. Valverde, A. Castellanos, P. Mills and M.A. S. Quintanilla, Phys. Rev. E., 67, 51305 (2003).

    Article  CAS  Google Scholar 

  4. M. J. Pilat and D. S. Ensor, Atmospheric Environment, 4, 163 (1970).

    Article  CAS  Google Scholar 

  5. J. Bridgwater, R. Utsumi, Z. Zhang and T. Tuladhar, Chem. Eng. Sci., 58, 4649 (2003).

    Article  CAS  Google Scholar 

  6. C.R. Bemrose and J. Bridgwater, Powder Technol., 49, 97 (1987).

    Article  CAS  Google Scholar 

  7. J. E. Gwyn, AIChE Symposium Series, 15, 35 (1969).

    CAS  Google Scholar 

  8. C. E. Ouwerkerk and D. Ouwerkerk, Powder Technol., 65, 125 (1991).

    Article  CAS  Google Scholar 

  9. A. U. Neil and J. Bridgwater, Powder Technol., 80, 207 (1994).

    Article  Google Scholar 

  10. A. U. Neil and J. Bridgwater, Powder Technol., 106, 37 (1999).

    Article  CAS  Google Scholar 

  11. C. Crutchley and J. Bridgwater, KONA Powder and Particle, 15, 21 (1997).

    CAS  Google Scholar 

  12. M. Ghadiri, Z. Ning, S. J. Kenter and E. Puik, Chem. Eng. Sci., 55, 5445 (2000).

    Article  CAS  Google Scholar 

  13. A. V. Potapov and C. S. Campbell, Powder Technol., 120, 164 (2001).

    Article  CAS  Google Scholar 

  14. M. Ghadiri and Z. Zhang, Chem. Eng. Sci., 57, 3659 (2002).

    Article  CAS  Google Scholar 

  15. K. Johnsen and J. R. Grace, Powder Technol., 173, 200 (2007).

    Article  CAS  Google Scholar 

  16. ASTM Standard D-5757-Revised, ASTM, Philadelphia PA (2006).

  17. R. Boerefijn, N. J. Gudde and M. Ghadiri, Adv. Powder Technol., 11, 145 (2000).

    Article  CAS  Google Scholar 

  18. H. Kalman, Powder Technol., 112, 244 (2000).

    Article  CAS  Google Scholar 

  19. J. P.K. Seville, M.A. Mullier, L. Hailu and M. J. Adams, Fluidization VII, 586 (1994).

  20. M.A. Mullier, J. P.K. Seville and M. J. Adams, Powder Technol., 65, 321 (1991).

    Article  CAS  Google Scholar 

  21. R. Zhao, J. Goodwin and R. Oukaci, Appl. Catal. A., 189, 99 (1999).

    Article  CAS  Google Scholar 

  22. S. A. Weeks and P. Dumbill, Oil Gas J., 88, 38 (1990).

    CAS  Google Scholar 

  23. A.D. Salman, M. J. Hounslow and A. Verba, Powder Technol., 126, 109 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeeshan Nawaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nawaz, Z., Xiaoping, T., Wei, X. et al. Attrition behavior of fine particles in a fluidized bed with bimodal particles: Influence of particle density and size ratio. Korean J. Chem. Eng. 27, 1606–1612 (2010). https://doi.org/10.1007/s11814-010-0240-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0240-5

Key words

Navigation