Skip to main content
Log in

Effect of the Density of a Microspherical Catalyst on the Operating Regimes of a Fluidized Bed

  • Engineering Problems. Operation and Production
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

An experimental study is performed of a circulating fluidized bed of two types of finely dispersed Geldart A particles with different bulk densities. The first type of particles have bulk density ρb = 1200 kg/m3, while the bulk density of the second type of particles is ρb = 1300 kg/m3. The studies are performed on a test bench 0.7 m in diameter and 5.75 m tall at room temperature with air used as the fluidizing gas. The velocity of fluidization ranges from 0.1 to 0.75 m/s. The bed is sectioned along its height with a set of horizontal diffuser grids. The results from measuring the fluctuations, the average drops in pressure, and the pressure distribution along the height of the fluidized bed are used to estimate the effect produced by the density of particles on its operational regimes. Velocity of transition Uc, determined from the mean-square deviations of pressure drop fluctuations, is 0.40 m/s for lighter particles and 0.35 m/s for heavier particles. Velocity of transition Uc determined from the power of the energy spectrum of pressure fluctuations Е is 0.45 and 0.40 m/s for lighter and heavier particles, respectively. The results from pressure measurements along the bed height show a linear drop with increasing bed height, and this drop is faster for heavier particles than for lighter particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sadeghbeigi, R., Fluid Catalytic Cracking Handbook, Oxford: Elsevier, 2012.

    Google Scholar 

  2. Pakhomov, N.A., in Promyshlennyi kataliz v lektsiyakh (Industrial Catalysis in Lectures), Noskov, A.S., Ed., Moscow: Kalvis, 2006, vol. 6, pp. 53–98.

    CAS  Google Scholar 

  3. Sanfilippo, D. and Miracca, I., Catal. Today, 2006, vol. 111, nos. 1–2, pp. 133–139.

    Article  CAS  Google Scholar 

  4. Geldart, D., Powder Technol., 1973, vol. 7, no. 5, pp. 285–292.

    Article  CAS  Google Scholar 

  5. Yerushalmi, J. and Cankurt, N.T., Powder Technol., 1979, vol. 24, no. 2, pp. 187–205.

    Article  CAS  Google Scholar 

  6. Baskakov, A.P., Tuponogov, V.G., and Filippovsky, N.F., Powder Technol., 1986, vol. 45, no. 2, pp. 113–117.

    Article  Google Scholar 

  7. Clark, N.N. and Atkinson, C.M., Chem. Eng. Sci., 1988, vol. 43, no. 7, pp. 1547–1557.

    Article  CAS  Google Scholar 

  8. Chehbouni, A., Chaouki, J., Guy, C., and Klvana, D., Ind. Eng. Chem. Res., 1994, vol. 33, no. 8, pp. 1889–1896.

    Article  CAS  Google Scholar 

  9. Bi, H.T., Grace, J.R., and Zhu, J., Powder Technol., 1995, vol. 82, no. 3, pp. 239–253.

    Article  CAS  Google Scholar 

  10. Bai, D., Shibuya, E., Masuda, Y., Nakagawa, N., and Kato, K., Chem. Eng. Sci., 1996, vol. 51, no. 6, pp. 957–966.

    Article  CAS  Google Scholar 

  11. Trnka, O., Veselý, V., Hartman, M., and Beran, Z., AIChE J., 2000, vol. 46, no. 3, pp. 509–514.

    Article  CAS  Google Scholar 

  12. Kashkin, V.N., Lakhmostov, V.S., Zolotarskii, I.A., Noskov, A.S., and Zhou, J.J., Chem. Eng. J., 2003, vol. 91, nos. 2–3, pp. 215–218.

    Article  CAS  Google Scholar 

  13. Johnsson, F., Zijerveld, R.C., Schouten, J.C., van den Bleek, C.M., and Leckner, B., Int. J. Multiphase Flow, 2000, vol. 26, no. 4, pp. 663–715.

    Article  CAS  Google Scholar 

  14. Ege, P., Grislingås, A., and de Lasa, H.I., Chem. Eng. J., 1996, vol. 61, no. 3, pp. 179–190.

    CAS  Google Scholar 

  15. Bai, D., Issangya, A.S., and Grace, J.R., Ind. Eng. Chem. Res., 1999, vol. 38, no. 3, pp. 803–811.

    Article  CAS  Google Scholar 

  16. Ellis, N., Briens, L.A., Grace, J.R., Bi., H.T. and Lim, C.J., Chem. Eng. J., 2003, vol. 96, nos. 1–3, pp. 105–116.

    Article  CAS  Google Scholar 

  17. Chen, A.H., Bi, H.T., and Grace, J.R., Powder Technol., 2003, vols. 135–136, pp. 181–191.

    Article  CAS  Google Scholar 

  18. Foka, M., Chaouki, J., Guy, C., and Klvana, D., Chem. Eng. Sci., 1996, vol. 51, no. 5, pp. 713–723.

    Article  CAS  Google Scholar 

  19. Bi, H.T. and Grace, J.R., Chem. Eng. J. Biochem. Eng. J., 1995, vol. 57, no. 3, pp. 261–271.

    Article  CAS  Google Scholar 

  20. Harrison, D. and Grace, J.R., in Fluidization, Davidson, J.F. and Harrison, D., Eds., New York: Academic Press, 1971, ch.13.

  21. Zhang, Y., Grace, J.R., Bi, X., Lu, C., and Shi, M., Chem. Eng. Sci., 2009, vol. 64, no. 14, pp. 3270–3281.

    Article  CAS  Google Scholar 

  22. Zhang, Y., Lu, C., and Shi, M., Chem. Eng. Res. Des., 2009, vol. 87, no. 10, pp. 1400–1408.

    Article  CAS  Google Scholar 

  23. Van Dijk, J.-J., Hoffmann, A.C., Cheesman, D., and Yates, J.G., Powder Technol., 1998, vol. 98, no. 3, pp. 273–278.

    Article  Google Scholar 

  24. Cui, H.P., Strabel, M., Rusnell, D., Bi, H.T., Mansaray, K., Grace, J.R., Lim, C.J., McKnight, C.A., and Bulbuc, D., Chem. Eng. Sci., 2006, vol. 61, no. 2, pp. 388–396.

    Article  CAS  Google Scholar 

  25. Serov, A.N., Development and study of an instrument for the increased-precision measurement of electric power quality characteristics, Cand. Sci. (Eng.) Dissertation, Moscow: Moscow Power Eng. Inst., 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Klenov.

Additional information

Original Russian Text © O.P. Klenov, A.S. Noskov, O.A. Parakhin, 2017, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klenov, O.P., Noskov, A.S. & Parakhin, O.A. Effect of the Density of a Microspherical Catalyst on the Operating Regimes of a Fluidized Bed. Catal. Ind. 10, 126–134 (2018). https://doi.org/10.1134/S2070050418020101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050418020101

Keywords

Navigation