Skip to main content
Log in

A crossover random lattice fluid model for hydrocarbons and carbon dioxide

  • Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A random lattice fluid model with finite coordination number is a versatile molecular-based lattice fluid equation of state, but this model fails to reproduce the non-analytical, singular behavior of fluids in the critical region. In this work, a method of obtaining the classical critical properties is presented in the random lattice fluid model. This model is combined with the crossover theory to obtain the crossover random lattice fluid model and to calculate the thermodynamic properties of hydrocarbons and carbon dioxide. This crossover random lattice fluid model presents much better agreement with experimental data near to and far from the critical region than the classical random lattice fluid model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. C. Sanchez and R. H. Lacombe, J. Phys. Chem., 80, 2352 (1976).

    Article  CAS  Google Scholar 

  2. R. H. Lacombe and I. C. Sanchez, J. Phys. Chem., 80, 2368 (1976).

    Article  Google Scholar 

  3. J. M. H. Levelt-Sengers, Fluid Phase Equilib., 158–160, 3 (1999).

    Article  Google Scholar 

  4. K. Gauter and R. A. Heidemann, Ind. Eng. Chem. Res., 39, 1115 (2000).

    Article  CAS  Google Scholar 

  5. H. C. Burstyn and J. V. Sengers, Physical Review Letters, 45, 259 (1980).

    Article  Google Scholar 

  6. J. V. Sengers and J. M. H. Levelt-Sengers, Ann. Rev. Phys. Chem., 37, 189 (1986).

    Article  CAS  Google Scholar 

  7. S. B. Kiselev and D. G. Friend, Fluid Phase Equilib., 162, 51 (1999).

    Article  CAS  Google Scholar 

  8. S. B. Kiselev and J. F. Ely, Ind. Eng. Chem. Res., 38, 4993 (1999).

    Article  CAS  Google Scholar 

  9. M. S. Shin, Y. Lee and H. Kim, J. Chem. Thermodyn., 40, 174 (2008).

    Article  CAS  Google Scholar 

  10. E. Neau, Fluid Phase Equilib., 203, 133 (2002).

    Article  CAS  Google Scholar 

  11. E. A. Guggenheim, Mixtures, Clarendon Press, Oxford (1952).

    Google Scholar 

  12. C. Panayiotou and J. H. Vera, Polymer J., 14, 681 (1982).

    Article  CAS  Google Scholar 

  13. S. K. Kumar, U. W. Suter and R. C. Reid, Ind. Eng. Chem. Res., 26, 2532 (1987).

    Article  CAS  Google Scholar 

  14. K. Gauter and R. A. Heideman, Ind. Eng. Chem. Res., 39, 1115 (2000).

    Article  CAS  Google Scholar 

  15. S. B. Kiselev and J. F. Ely, Fluid Phase Equilib., 119, 8645 (2003).

    CAS  Google Scholar 

  16. M. A. Anisimov, S. B. Kiselev, J. V. Sengers and S. Tang, Physica A, 188, 487 (1992).

    Article  Google Scholar 

  17. J. Kang, K. Yoo, H. Kim, J. Lee, D. Yang and C. Lee, Int. J. Thermophys., 22, 487 (2001).

    Article  CAS  Google Scholar 

  18. M. S. Shin and H. Kim, Fluid Phase Equilib., 246, 79 (2006).

    Article  CAS  Google Scholar 

  19. M. S. Shin, K. P. Yoo, C. S. Lee and H. Kim, Korean J. Chem. Eng., 23, 469 (2006).

    Article  CAS  Google Scholar 

  20. M. S. Shin, K. P. Yoo, C. S. Lee and H. Kim, Korean J. Chem. Eng., 23, 476 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Sam Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, M.S. A crossover random lattice fluid model for hydrocarbons and carbon dioxide. Korean J. Chem. Eng. 27, 1286–1290 (2010). https://doi.org/10.1007/s11814-010-0233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0233-6

Key words

Navigation