Skip to main content

Advertisement

Log in

Catalytic production of hydroxymethylfurfural from sucrose using 1-methyl-3-octylimidazolium chloride ionic liquid

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydroxymethylfurfural (HMF) is an important chemical intermediate, but it has not been widely used because of low yields and high production costs. Sucrose is available at lower costs than other sugars and thus could be a biomass-derived abundant source for HMF production. In this study, a catalytic process for efficiently producing HMF from sucrose was scrutinized using 1-methyl-3-octylimidazolium chloride ([MOIM]Cl) as a reaction solvent, and HCl and metal chlorides (CrCl2 and Zncl2) as a catalyst. The rate of sucrose hydrolysis was relatively much faster in the reactions with HCl than without it. The hydrolysis of sucrose to fructose and glucose was affected by its reaction time. The mixed solvent of 50% [MOIM]Cl and 50% sucrose solution with HCl was more effective in HMF synthesis than single solvent alone. The addition of ZnCl2 and CrCl2 increased HMF yields by approximately 1.2–1.8-fold and its higher yield was found in the latter. The highest yield (82.0±3.9 wt%) in HMF production was achieved in the reaction mixture containing 5 g [MOIM]Cl and 5 mL of 20% sucrose solution with 0.5M HCl plus CrCl2 at 30 min reaction time. However, 0.3 M HCl was more effective for the HMF productivity than 0.5 M HCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu and J. A. Dumesic, Nature, 447, 982 (2007).

    Article  CAS  Google Scholar 

  2. J. Lewkowski, ARKIVOC, 1, (ARKAT-USA; ISSN 1424-6376), 17 (2001) (Website: www.arkat-usa.org/home.aspx?VIEW-MANUSCRIPT&MSID=403).

  3. H.H. Szmant and D.D. Chundury, J. Chem. Tech. Biotechnol., 31, 135 (1981).

    Article  CAS  Google Scholar 

  4. J. B. Binder and R. T. Raines, J. Am. Chem. Soc., 131, 1979 (2009).

    Article  CAS  Google Scholar 

  5. C. Lansalot-Matras and C. Moreau, Catal. Commun., 4, 517 (2003).

    Article  CAS  Google Scholar 

  6. C. Moreau, R. Durand, F. Aliès, M. Cotillon, T. Frutz and M.-A. Theoléyre, Ind. Crops Products, 11, 237 (2000).

    Article  CAS  Google Scholar 

  7. C. Moreau, A. Finiels and L. Vanoye, J. Mol. Catal. A: Chem., 253, 165 (2006).

    Article  CAS  Google Scholar 

  8. Y. Su, H. M. Brown, X. Huang, X.-D. Zhou, J. Amonette and Z. C. Zhang, Appl. Catal. A: General, 361, 117 (2009).

    Article  CAS  Google Scholar 

  9. H. Zhao, J. E. Holladay, H. Brown and Z.C. Zhang, Science, 316, 1597 (2007).

    Article  CAS  Google Scholar 

  10. Y. Román-Leshkov, J.N. Chheda and J.A. Dumesic, Science, 312, 1933 (2006).

    Article  CAS  Google Scholar 

  11. A. Corma, S. Iborra and A. Velty, Chem. Rev., 107, 2411 (2007).

    Article  CAS  Google Scholar 

  12. M. J. Antal, W. S. L. Mok and G.N. Richards, Carbohydr. Res., 199, 91 (1990).

    Article  CAS  Google Scholar 

  13. G.W. Huber, J.N. Chheda, C. J. Barrett and J. A. Dumesic, Science, 308, 1446 (2005).

    Article  CAS  Google Scholar 

  14. E. L. Kunkes, D.A. Simonetti, R.M. West, J.C. Serrano-Ruiz, C.A. Gärtner and J. A. Dumestic, Science, 322, 417 (2008).

    Article  CAS  Google Scholar 

  15. D.A. Fort, R. C. Remsing, R. P. Swatloski, P. Moyna, G. Moyna and R. D. Rogers, Green Chem., 9, 63 (2007).

    Article  CAS  Google Scholar 

  16. J.G. Huddleston, A. E. Visser, W. M. Reicher, H.D. Willauer, G.A. Broker and R. D. Rogers, Green Chem., 3, 156 (2001).

    Article  CAS  Google Scholar 

  17. V. Kamavaram and R.G. Reddy, Int. J. Therm. Sci., 47, 773 (2008).

    Article  CAS  Google Scholar 

  18. N.V. Plechkova and K.R. Seddon, Chem. Soc. Rev., 37, 123 (2008).

    Article  CAS  Google Scholar 

  19. R.C. Remsing, G. Hernandez, R. P. Swatloski, W.W. Massefski, R.D. Rogers and G. Moyna, J. Phys. Chem. B, 112, 11071 (2008).

    Article  CAS  Google Scholar 

  20. S. Xu, C. Huang, J. Zhang, J. Liu and B. Chen, Korean J. Chem. Eng., 26, 985 (2009).

    Article  CAS  Google Scholar 

  21. D. S. Pito, I.M. Fonseca, A. M. Ramos, J. Vital and J. E. Castanheiro, Bioresour. Technol., 100, 4546 (2009).

    Article  CAS  Google Scholar 

  22. C. F. Kautz and A. L. Robinson, J. Amer. Chem. Soc., 50, 1022 (1928).

    Article  CAS  Google Scholar 

  23. G.W. Farr and J. R. Heitz, J. Dental Res., 53, 516 (1974).

    CAS  Google Scholar 

  24. Y. Li, X. Lu, L. Yuan and X. Liu, Biomass Bioenergy, 33, 1182 (2009).

    Article  CAS  Google Scholar 

  25. A. S. Amarasekara and C. C. Ebede, Bioresour. Technol., 100, 5301 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Han Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, JA., Lee, JW., Yi, YB. et al. Catalytic production of hydroxymethylfurfural from sucrose using 1-methyl-3-octylimidazolium chloride ionic liquid. Korean J. Chem. Eng. 27, 930–935 (2010). https://doi.org/10.1007/s11814-010-0167-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0167-x

Key words

Navigation