Skip to main content
Log in

Control of oxygen concentration in water using a hollow fiber membrane contactor

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A novel theoretical analysis was performed to regulate the oxygen concentration in water using a membrane contactor composed of nonporous hollow fibers. The governing ordinary differential equations were derived for the countercurrent flow of the feed water and the feed gas in a membrane contactor. The governing equations were regarded as a two point boundary value problem. The nonlinear ordinary differential equations were simultaneously solved using a finite difference method. The computer program was coded in Fortran language using the Compaq Visual Fortran Software. It was found that the concentration of oxygen dissolved in water increases from 28.9 to 64.3 ppm as the area of the membrane increases from 1.24 to 3.73 m2 at the given typical operating condition: the flow rate of the feed gas is kept to be 1.0 L/min; its pressure is maintained to be 4 atm; the flow rate of the water is 15 L/min. It is observed that the concentration of oxygen increases from 48.2 to 56.2 ppm as the concentration of the feed gas increases from 0.75 to 0.95 mole fraction. As the flow rate of the water increases from 15 to 25 L/min, the concentration of oxygen decreases from 56.2 to 38.6 ppm with a constant membrane area of 3.11 m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. Kumar, J.A. Hogendoorn, P.H. M. Feron and G. F. Versteeg, J. Membr. Sci., 213, 231 (2003).

    Article  CAS  Google Scholar 

  2. M. Mavroudi, S. P. Kaldis and G. P. Sakellaropoulos, Fuel, 82, 2153 (2003).

    Article  CAS  Google Scholar 

  3. G. B. Kim, S. J. Kim, C. U. Hong, T. K. Kwon and N. G. Kim, Korean J. Chem. Eng., 22, 521 (2005).

    Article  CAS  Google Scholar 

  4. Y. S. Kim and S. M. Yang, Sep. Purif. Technol., 21, 101 (2000).

    Article  CAS  Google Scholar 

  5. C. Liu and R. Bai, J. Membr. Sci., 284, 313 (2006).

    Article  CAS  Google Scholar 

  6. H. Kawakita, K. Uezu, S. Tsuneda, K. Saito, M. Tamada and T. Sugo, Hydrometallurgy, 81, 190 (2006).

    Article  CAS  Google Scholar 

  7. K. Hagiwara, S. Yonedu, K. Saito, T. Shiraishi, T. Sugo, T. Tojyo and E. Katayama, J. Chromatogr. B, 821, 153 (2005).

    Article  CAS  Google Scholar 

  8. P. Hadik, L. Kotsis, M. Eniszné-Bódogh, L. Szabó and E. Nagy, Sep. Purif. Technol., 41, 299 (2005).

    Article  CAS  Google Scholar 

  9. J. Chen, H. Chang and S. R. Chen, Int. J. Refrigeration, 29, 1043 (2006).

    Article  CAS  Google Scholar 

  10. A. Ito, K. Yamagiwa, M. Tamura and M. Furusawa, J. Membr. Sci., 145, 111 (1998).

    Article  CAS  Google Scholar 

  11. H. Kreulen, C.A. Smolders, G. F. Versteeg and W. P. M. Van Swaaij, Chem. Eng. Sci., 48, 2093 (1993).

    Article  CAS  Google Scholar 

  12. S. Karoor and K. K. Sirkar, Ind. Eng. Chem. Res., 32, 674 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongtaek Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, D., Yun, M., Oh, J. et al. Control of oxygen concentration in water using a hollow fiber membrane contactor. Korean J. Chem. Eng. 27, 939–943 (2010). https://doi.org/10.1007/s11814-010-0129-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0129-3

Key words

Navigation