Skip to main content
Log in

Modeling of aqueous electrolyte solutions based on perturbed-chain statistical associating fluid theory incorporated with primitive mean spherical approximation

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this work an equation of state applicable to the system containing electrolytes has been developed by coupling the perturbed chain statistical associating fluid theory (PC-SAFT) with the primitive mean spherical approximation. The resulting electrolyte equation of state is characterized by 4 ion parameters for each of the cation and anion contained in aqueous solutions, and 4 ion specific parameters for each of six cations (Li+, Na+, K+, Rb+, Mg2+ and Ca2+) and six anions (Cl, Br, I, HCO 3 , NO 3 and SO 2−4 ) were estimated, based upon the individual ion approach, from the fitting of experimental densities and mean ionic activity coefficients of 26 aqueous single-salt solutions at 298.15 K and 1 bar. The present equation of state with the estimated individual ion parameters has been found to satisfactorily describe not only the densities and mean ionic activity coefficients, but also osmotic coefficients and water activities of single-salt aqueous solutions. Furthermore, the present model was extended to two-salt aqueous solutions, and it has been found that thermodynamic properties such as mentioned above, of two-salt solutions, can be well predicted with the present model, without any additional adjustable parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. Lee, Molecular thermodynamics of nonideal fluids, Butterworth Publishers, Stonehan, MA (1988).

    Google Scholar 

  2. S. I. Sandler, Models for thermodynamics and phase equilibria calculations, Marcel Dekker, New York (1994).

    Google Scholar 

  3. L. L. Lee, Molecular thermodynamics of electrolyte solutions, World Scientific Publishing Co., Hackensack, NJ (2008).

    Google Scholar 

  4. H. Renon, Fluid Phase Equilibria, 30, 181 (1986).

    Article  CAS  Google Scholar 

  5. J. R. Loehe and M. D. Donohue, AIChE J., 43, 180 (1997).

    Article  CAS  Google Scholar 

  6. C.-C. Chen, H. I. Britt, J. F. Boston and L. B. Evans, AIChE J., 28, 588 (1982).

    Article  CAS  Google Scholar 

  7. C.-C. Chen and L. B. Evans, AIChE J., 32, 444 (1986).

    Article  CAS  Google Scholar 

  8. B. Mock, L. B. Evans and C.-C. Chen, AIChE J., 32, 1655 (1986).

    Article  CAS  Google Scholar 

  9. J. Rennotte, H. Massillon and B. Kalitventzeff, Computers Chem. Eng., 13, 411 (1989).

    Article  CAS  Google Scholar 

  10. E. Zhao, M. Yu, R. E. Sauve and M.K. Khoshkbarchi, Fluid Phase Equilibria, 173, 161 (2000).

    Article  CAS  Google Scholar 

  11. E. Waisman and J. L. Lebowitz, J. Chem. Phys., 52, 4307 (1970).

    Article  CAS  Google Scholar 

  12. L. Blum, Mol. Phys., 30, 1529 (1975).

    Article  CAS  Google Scholar 

  13. L. Blum and J. S. Høye, J. Phys. Chem., 81, 1311 (1977).

    Article  CAS  Google Scholar 

  14. G. Jin and M. D. Donohue, Ind. Eng. Chem. Res., 27, 1073 (1988).

    Article  CAS  Google Scholar 

  15. W. Furst and H. Renon, AIChE J., 39, 335 (1993).

    Article  Google Scholar 

  16. J. Wu and J. M. Prausnitz, Ind. Eng. Chem. Res., 37, 1634 (1998).

    Article  CAS  Google Scholar 

  17. J.A. Myers, S. I. Sandler and R. H. Wood, Ind. Eng. Chem. Res., 41, 3282 (2002).

    Article  CAS  Google Scholar 

  18. Y. Lin, K. Thomsen and J.-C. de Hemptinne, AIChE J., 53, 989 (2007).

    Article  CAS  Google Scholar 

  19. W. G. Chapman, K. E. Gubbins, G. Jackson and M. Radosz, Ind. Eng. Chem. Res., 29, 1709 (1990).

    Article  CAS  Google Scholar 

  20. S. H. Huang and M. Radosz, Ind. Eng. Chem. Res., 29, 2284 (1990).

    Article  CAS  Google Scholar 

  21. Z. Liu, W. Wang and Y. Li, Fluid Phase Equilibria, 227, 147 (2005).

    Article  CAS  Google Scholar 

  22. A. Galindo, A. Gil-Villegas, G. Jackson and A. N. Burgess, J. Phys. Chem. B, 103, 10272 (1999).

    Article  CAS  Google Scholar 

  23. S. P. Tan, H. Adidharma and M. Radosz, Ind. Eng. Chem. Res., 44, 4442 (2005).

    Article  CAS  Google Scholar 

  24. X. Ji, S. P. Tan, H. Adidharma and M. Radosz, Ind. Eng. Chem. Res., 44, 7584 (2005).

    Article  CAS  Google Scholar 

  25. S. P. Tan, X. Ji, H. Adidharma and M. Radosz, J. Phys. Chem. B, 110, 16694 (2006).

    Article  CAS  Google Scholar 

  26. X. Ji and H. Adidharma, Ind. Eng. Chem. Res., 45, 7719 (2006).

    Article  CAS  Google Scholar 

  27. X. Ji and H. Adidharma, Ind. Eng. Chem. Res., 46, 4667 (2007).

    Article  CAS  Google Scholar 

  28. X. Ji and H. Adidharma, Chem. Eng. Sci., 63, 131 (2008).

    Article  CAS  Google Scholar 

  29. L. F. Carmeretti, G. Sadowski and J. M. Mollerup, Ind. Eng. Chem. Res., 44, 3355 (2005).

    Article  CAS  Google Scholar 

  30. J. Gross and G. Sadowski, Ind. Eng. Chem. Res., 40, 1244 (2001).

    Article  CAS  Google Scholar 

  31. C. Held, L. F. Cameretti and G. Sadowski, Fluid Phase Equilibria, 270, 87 (2008).

    Article  CAS  Google Scholar 

  32. Y. Liu, Z. Li, J. Mi and C. Zhong, Ind. Eng. Chem. Res., 47, 1695 (2008).

    Article  CAS  Google Scholar 

  33. Y. S. Kim and C. S. Lee, Ind Eng. Chem. Res., 47, 5102 (2008).

    Article  CAS  Google Scholar 

  34. I. G. Economou, Ind. Eng. Chem. Res., 41, 953 (2002).

    Article  CAS  Google Scholar 

  35. F. Tumakaka, J. Gross and G. Sadowski, Fluid Phase Equilibria, 228–229, 89 (2005).

    Article  CAS  Google Scholar 

  36. J. N. Israelachvili, Intermolecular and surface forces, Second ed., Academic Press. Inc., San Diego, CA (1991).

    Google Scholar 

  37. M. S. Wertheim, J. Statist. Phys., 35, 35 (1984).

    Article  Google Scholar 

  38. J. C. Rasaiah and H. L. Friedman, J. Chem. Phys., 48, 2742 (1968).

    Article  CAS  Google Scholar 

  39. T. Ichiye and A. D. J. Haymet, J. Chem. Phys., 93, 8954 (1990).

    Article  CAS  Google Scholar 

  40. G. Jin and M. D. Donohue, Ind. Eng. Chem. Res., 30, 240 (1991).

    Article  CAS  Google Scholar 

  41. R. A. Robinson and R. H. Stokes, Electrolyte solutions, Butterworth Co. Ltd. (1968).

  42. A. H. Harvey, Thermodynamic properties of water: Tabulation from the IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, NISTIR 5078, Natl. Inst. Stand. Technol., Boulder, CO, (1998).

    Google Scholar 

  43. H. Ohtaki and H. Yamatera, Structure and dynamics of solutions, Elsevier Publishers, Amsterdam, The Netherlands (1992).

    Google Scholar 

  44. S. H. Lee and J. C. Rasaiah, J. Phys. Chem., 100, 1420 (1996).

    Article  CAS  Google Scholar 

  45. S. Koneshan, J. C. Rasaiah, R. M. Lynden-Bell and S. H. Lee, J. Phys. Chem. B, 102, 4193 (1998).

    Article  CAS  Google Scholar 

  46. Y. Marcus, Ion solvation, John Wiley & Sons Ltd., New York (1985).

    Google Scholar 

  47. J. M. Prausnitz, R. N. Lichtenthaler and E. G. de Azevedo, Molecular thermodynamics of fluid-phase equikibria, Prentice-Hall, Inc., Upper saddle River, NJ (1999).

    Google Scholar 

  48. T. Boublik, J. Chem. Phys., 53, 471 (1970).

    Article  CAS  Google Scholar 

  49. G. A. Mansoori, N. F. Carnahan, K. E. Starling and T. W. Leland Jr., J. Chem. Phys., 54, 1523 (1971).

    Article  CAS  Google Scholar 

  50. I. D. Zaytsev and G. G. Aseyev, Properties of aqueous solutions of electrolytes, CRC Press (1992).

  51. V. M. M. Lobo and J. L. Quaresma, Handbook of Electrolyte Solutions, Parts A and B, Elsevier, Amsterdam (1989).

    Google Scholar 

  52. W. J. Hamer and Y.-C. Wu, J. Phys. Chem. Ref. Data, 1, 1047 (1972).

    Article  CAS  Google Scholar 

  53. R. N. Goldberg, J. Phys. Chem. Ref. Data, 10, 671 (1981).

    CAS  Google Scholar 

  54. J. C. Peiper and K. S. Pitzer, J. Chem. Thermodyn., 14, 613 (1982).

    Article  CAS  Google Scholar 

  55. R. N. Roy, J. J. Gibbons, M. D. Wood and R. W. Williams, J. Chem. Thermodyn., 15, 37 (1983).

    Article  CAS  Google Scholar 

  56. R. N. Goldberg and R. L. Nuttall, J. Phys. Chem. Ref. Data, 7, 263 (1978).

    CAS  Google Scholar 

  57. H.-L. Zhang and S.-J. Han, J. Chem. Eng. Data, 41, 516 (1996).

    Article  Google Scholar 

  58. H.-L. Zhang, G.-H. Chen and S.-J. Han, J. Chem. Eng. Data, 42, 526 (1997).

    Article  CAS  Google Scholar 

  59. B. M. Fabuss, A. Korosi and A. K. M. Shamsul Huq, J. Chem. Eng. Data, 11, 325 (1966).

    Article  CAS  Google Scholar 

  60. A. Kumar, J. Chem. Eng. Data, 34, 446 (1989).

    Article  CAS  Google Scholar 

  61. A. Kumar, J. Chem. Eng. Data, 34, 87 (1989).

    Article  Google Scholar 

  62. R. A. Robinson and C. K. Lim, Trans. Fraraday Soc., 49, 1144 (1953).

    Article  CAS  Google Scholar 

  63. Y. Yao, B. Sun, P.-S. Song, Z. Zhang, R.-L. Wang and J.-Q. Chen, Acta Chim. Sin, 50, 839 (1992).

    CAS  Google Scholar 

  64. G. Long, Y. Yao, F. Wang and R. Wang, Wuli Huaxue Xuebao, 15, 956 (1999).

    CAS  Google Scholar 

  65. A. K. Covington, T. H. Lilley and R. A. Robinson, J. Phys. Chem., 72, 2759 (1968).

    Article  CAS  Google Scholar 

  66. C. P. Bezboruah, A. K. Covington and R. A. Bobinson, J. Chem. Thermodyn., 2, 431 (1970).

    Article  CAS  Google Scholar 

  67. Y. C. Wu, R. M. Rush and G. Scatchard, J. Phys. Chem., 72, 4048 (1968).

    Article  CAS  Google Scholar 

  68. R.A. Robinson and V. E. Bower, J. Res. Natl. Bur. Stand., Sect. A: Phys. Chem., 70, 313 (1966).

    CAS  Google Scholar 

  69. R. A. Robinson, R. F. Platford and C. W. Childs, J. Sol. Chem., 1, 167 (1972).

    Article  CAS  Google Scholar 

  70. J. Padova and D. Saad, J. Sol. Chem., 6, 57 (1977).

    Article  CAS  Google Scholar 

  71. R. A. Robinson and A. K. Covington, J. Res. Natl. Bur. Stand., Sect. A: Phys. Chem., 72, 239 (1966).

    Google Scholar 

  72. R. A. Robinson and V. E. Bower, J. Res. Natl. Bur. Stand., Sect. A: Phys. Chem., 70, 305 (1966).

    CAS  Google Scholar 

  73. Y. C. Wu, R. M. Rush and G. Scatchard, J. Phys. Chem. B, 73, 2047 (1969).

    Article  CAS  Google Scholar 

  74. F. Deyhimi, M. Sabzehzari and Z. Karimzadeh, Chem. Eng. Comm., 194, 1654 (2007).

    Article  CAS  Google Scholar 

  75. R. Huston and J. N. Butler, Anal. Chem., 41, 1695 (1969).

    Article  CAS  Google Scholar 

  76. R. D. Lanier, J. Phys. Chem., 69, 3992 (1965).

    Article  CAS  Google Scholar 

  77. J. A. Rard and D. G. Miller, J. Chem. Eng. Data, 32, 85 (1987).

    Article  CAS  Google Scholar 

  78. J. N. Butler, P. T. Hsu and J. C. Synnott, J. Phys. Chem., 71, 910 (1967).

    Article  CAS  Google Scholar 

  79. J. Zhang, S.-y. Gao and S.-p. Xia, J. Chem. Eng. Data, 49, 444 (2004).

    Article  CAS  Google Scholar 

  80. W. F. Linke, Solubilities of inorganic and metal-organic compounds, American Chemical Society, Washington (1965).

    Google Scholar 

  81. H. L. Silcock, Solubilities of inorganic and organic compounds, Pergamon, Oxford (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Chang Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, BS., Kim, KC. Modeling of aqueous electrolyte solutions based on perturbed-chain statistical associating fluid theory incorporated with primitive mean spherical approximation. Korean J. Chem. Eng. 26, 1733–1747 (2009). https://doi.org/10.1007/s11814-009-0286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0286-4

Key words

Navigation