Skip to main content

Advertisement

Log in

Hydrogen sorption characteristics of Zonguldak region coal activated by physical and chemical methods

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydrogen sorption characteristics of activated carbons (ACs) produced by physical and chemical activations from two coal mines (Kilimli and Armutcuk) in the Zonguldak region, Turkey were investigated by a volumetric technique at 77 K. H2 adsorption isotherms were obtained on the samples exposed to pyrolytic thermal treatments in a temperature range of 600–900 °C under N2 flow and chemical activation using different chemical agents such as KOH, NH4Cl, ZnCl2 from the two mines. Experimental hydrogen adsorption isotherm data at 77 K were used for the evaluation of the adsorption isotherm constants of the Brunauer-Emmett-Teller (BET) and the Langmuir models, and also the amount of hydrogen adsorbed on the various samples was evaluated by using the adsorption isotherm data. Higher hydrogen adsorption capacity values were obtained for all the heat and the chemically treated activated carbon samples from the Kilimli coal samples than Armutcuk. The amount of H2 adsorbed on the original Kilimli coal samples was 0.020 wt%, and it was increased to 0.89 wt% on the samples pyrolyzed at 800 °C. The highest value of hydrogen adsorption obtained was 1.2 wt% for the samples treated with KOH+NH4Cl mixture at 750 °C followed by oxidation with ZnCl2. It was shown that chemical activations were much more effective than physical activations in increasing the surface area, pore volume and the hydrogen sorption capacities of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Jeong, E. S. Ahn, J.H. Yun, C.H. Lee and D.K. Choi, Sep. Purif. Technol., 55, 335 (2007).

    Article  CAS  Google Scholar 

  2. M. Zielinski, R. Wojcieszak, S. Monteverdi, M. Mercy and M.M. Bettahar, Int. J. Hydrogen Energy, 32, 1024 (2007).

    Article  CAS  Google Scholar 

  3. J. Jagiello, C.O. Ania, J. B. Parra, L. Jagiello and J. J. Pis, Carbon, 45, 1066 (2007).

    Article  CAS  Google Scholar 

  4. B. Panella, M. Hirscher and B. Ludescher, Microporous and Mesoporous Materials, 103, 230 (2007).

    Article  CAS  Google Scholar 

  5. T. Kopac and A. Toprak, Int. J. Hydrogen Energy, 32, 5005 (2007).

    Article  CAS  Google Scholar 

  6. Y. Swesi, P. Kerleau, I. Pitault, F. Heurtaux and D. Ronze, Sep. Purif. Technol., 56, 25 (2007).

    Article  CAS  Google Scholar 

  7. M. Jorda-Beneyto, F. Suárez-García, D. Lozano-Castello, D. Cazorla-Amorós and A. Linares-Solano, Carbon, 45, 293 (2007).

    Article  CAS  Google Scholar 

  8. K. S. Hwang, S.Y. Gong and W.K. Lee, Korean J. Chem. Eng., 8, 148 (1991).

    Article  CAS  Google Scholar 

  9. A. Chambers, C. Park, R. T. K. Baker and N.M. Rodriguez, J. Phys. Chem. B., 102, 4253 (1998).

    Article  CAS  Google Scholar 

  10. C. H. Chen and C. C. Huang, Int. J. Hydrogen Energy, 32, 237 (2007).

    Article  CAS  Google Scholar 

  11. M. Konstantakou, T.A. Steriotis, G.K. Papadopoulos, M. Kainourgiakis, E. S. Kikkinides and A.K. Stubos, Appl. Surf. Sci., 253, 5715 (2007).

    Article  CAS  Google Scholar 

  12. F. O. Erdogan and T. Kopac, Int. J. Hydrogen Energy, 32, 3448 (2007).

    Article  CAS  Google Scholar 

  13. K. Shindo, T. Kondo and Y. Sakurai, J. Alloys Comp., 379, 252 (2004).

    Article  CAS  Google Scholar 

  14. M. Hirscher and B. Panella, J. Alloys Comp., 404–406, 399 (2005).

    Article  Google Scholar 

  15. T. Kopac and T. Karaaslan, Int. J. Hydrogen Energy, 32, 3990 (2007).

    Article  CAS  Google Scholar 

  16. S. Kocabas, T. Kopac, G. Dogu and T. Dogu, Int. J. Hydrogen Energy, 33, 1693 (2008).

    Article  CAS  Google Scholar 

  17. P. Benard, R. Chahine, P.A. Chandonia, D. Cossement, G. Dorval- Douville, L. Lafi, P. Lachance, R. Paggiaro and E. Poirier, J. Alloys Comp., 446–447, 380 (2007).

    Article  Google Scholar 

  18. N. Texier-Mandoki, J. Dentzer, T. Piquero, S. Saadallah, P. David and C. Vix-Guterl, Carbon, 42, 2735 (2004).

    Article  Google Scholar 

  19. H. H. Schobert and C. Song, Fuel, 81, 15 (2002).

    Article  CAS  Google Scholar 

  20. H.W. Kang, S. S. Park and Y. S. Rim, Korean J. Chem. Eng., 23, 948 (2006).

    Article  CAS  Google Scholar 

  21. S. H. Lee and C. D. Lee, Korean J. Chem. Eng., 18, 26 (2001).

    Article  CAS  Google Scholar 

  22. Quantachrome Instruments NOVAWin V.1.12 User Manual (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turkan Kopac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopac, T., Toprak, A. Hydrogen sorption characteristics of Zonguldak region coal activated by physical and chemical methods. Korean J. Chem. Eng. 26, 1700–1705 (2009). https://doi.org/10.1007/s11814-009-0250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0250-3

Key words

Navigation