Skip to main content
Log in

Rapid differentiation of new isolates with MALDI-TOF mass spectrometry via discriminant function analysis based on principal components

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Discriminant function analysis based on principal components was applied to the spectral outputs of whole cell suspensions of nine isolates from matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. First, based on the salt tolerance and whole cell proteins, the similarity of the isolates to moderate halophiles was established. Intact microorganisms were then inferentially clustered by MALDI-TOF mass spectroscopy taking four type strains as precursors. Two of these type strains were moderate halophilic bacteria (Halomonas salina and Halomonas halophila), one was a mesophilic bacteria (Escherichia coli), and one was a halophilic archaea (Haloarcula vallismortis). Results showed that the isolates were significantly similar to halophiles but were different from a mesophile. This investigation demonstrates the feasibility of using whole cell suspensions for rapid differentiation prior to extensive experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Oren, J. Ind. Microbiol. Biot., 28, 56 (2002).

    Article  CAS  Google Scholar 

  2. R. Goodacre, S. Trew, C. Wrigley-Jones, M. J. Neal, J. Maddock, T.W. Ottley, N. Porter and D. B. Kell, Biotechnol. Bioeng., 44, 1205 (1994).

    Article  CAS  Google Scholar 

  3. P. Roepstorff, Curr. Opin. Biotech., 8, 6 (1997).

    Article  CAS  Google Scholar 

  4. G. E. Black and A. Fox (1996) In: P. A. Snyder (ed.) Biochemical and Biotechnological Applications of Electrospray Ionization Mass Spectrometry, Vol. DCXIX. American Chemical Society, Washington DC, 81–105 (1996).

    Chapter  Google Scholar 

  5. E. Vanlaere, K. Sergeant, P. Dawyndt, W. Kallow, M. Erhard, H. Sutton, D. Dare, B. Devreese, B. Samyn and P. Vandamme, J. Microbiological Methods, 75, 279 (2008).

    Article  CAS  Google Scholar 

  6. R. Dieckmann, I. Graber, I. Kaesler, U. Szewzyk and H. Von Dohren, Appl. Microbiol. Biotechnol., 67, 539 (2005).

    Article  CAS  Google Scholar 

  7. C. J. Keys, D. J. Dare, H. Sutton, G. Wells, M. Lunt, K. McKenna, M. McDowall and H. N. Shah, Infect. Genet. Evol., 4, 221 (2004).

    Article  CAS  Google Scholar 

  8. M. P. Kumar, M. Vairamani, R. P. Raju, C. Lobo, N. Abumani, C. P. Kumar, T. Menon and S. Shanmugasundaram, Indian J. Med. Res., 119, 283 (2004).

    CAS  Google Scholar 

  9. P. Pribil and C. Fenselau, Anal. Chem., 77, 6092 (2005).

    Article  CAS  Google Scholar 

  10. V. Ruelle, B. Moualij, W. Zorzi, P. Ledent and E. D. Pauw, Rapid Commun. Mass Spectrom., 18, 2013 (2004).

    Article  CAS  Google Scholar 

  11. B. L. Van Baar, FEMS Microbiol. Rev., 24, 193 (2000).

    Article  Google Scholar 

  12. J. J. Dalluge, Fresenius J. Anal. Chem., 366, 701 (2000).

    Article  CAS  Google Scholar 

  13. A. Fox, J. Clin. Microbiol., 44, 2677 (2006).

    Article  CAS  Google Scholar 

  14. D.B. Kell, M. Brown, H.M. Davey, W.B. Dunn, I. Spasic and S.G. Oliver, Nat. Rev. Microbiol., 3, 557 (2005).

    Article  CAS  Google Scholar 

  15. T. J. Siegrist, P.D. Anderson, W. E. Huen, G. T. Kleinheinz, C.M. Mcdermott and T. R. Sandrin, J. Microbiol. Methods, 68, 554 (2007).

    Article  CAS  Google Scholar 

  16. R. E. Mandrell, L.A. Harden, A. Bates, W.G. Miller, W. F. Haddon and C.K. Fagerquist, Appl. Environ. Microbiol., 71, 6292 (2005).

    Article  CAS  Google Scholar 

  17. R. Goodacre, J.K. Heald and D. B. Kell, FEMS Microbiol. Lett., 176, 17 (1999).

    Article  CAS  Google Scholar 

  18. J. Allen, H.M. Davey, D. Broashurst, J. K. Heald, J. J. Rowland and S. G. Oliver, Nat. Biotechnol., 21, 692 (2003).

    Article  CAS  Google Scholar 

  19. E.M. Timmins, A. S. Howell, B.K. Alsberg, W. C. Noble and R. Goodacre, J. Clin. Microbiol., 36, 367 (1998).

    CAS  Google Scholar 

  20. S. Vaidyanathan, J. J. Rowland, D. B. Kell and R. Goodacre, Anal. Chem., 73, 4134 (2001).

    Article  CAS  Google Scholar 

  21. H. Zhao, R. L. Parry, D. I. Ellis, G.W. Griffith and R. Goodacre, Vib. Spectrosc., 40, 213 (2006).

    Article  CAS  Google Scholar 

  22. P. Z. O’Farrel, H. M. Goodman and P.H. O’Farrel, Cell, 12, 1133 (1977).

    Article  Google Scholar 

  23. U. K. Laemmli, Nature, 227, 680 (1970).

    Article  CAS  Google Scholar 

  24. H. Blum, H. Beier and H. J. Gross, Electrophoresis, 8, 93 (1987).

    Article  CAS  Google Scholar 

  25. B. R. Bakshi, AIChE J., 44, 1596 (1987).

    Article  Google Scholar 

  26. L. Eriksson, E. Johansson, N. Kettaneh-Wold and S. Wold, Multiand megavariate data analysis; principles and applications, Umetrics AB, Umea, Sweden (Chapter 3) (2001).

    Google Scholar 

  27. http://www2.chass.ncsu.edu/garson/pa765/discrim.htm.

  28. http://www.statsoft.com/textbook/stathome.html.

  29. W. J. Dixon, Biomedical computer programs, Los Angeles: University of California Press (1975).

    Google Scholar 

  30. H. J.H. MacFie, C. S. Gutteridge and J. R. Norris, J. Gen. Microbiol., 104, 67 (1978).

    CAS  Google Scholar 

  31. http://personalpages.manchester.ac.uk/staff/Roy.Goodacre.

  32. A.K. Jain, M.N. Murty and P. J. Flynn, ACM Comput. Surv., 31, 264 (1999).

    Article  Google Scholar 

  33. U. Akman, N. Okay and O. Hortacsu, Korean J. Chem. Eng., 25, 329 (2008).

    Article  CAS  Google Scholar 

  34. E.A. Galinski and P. Louis, Compatible solutes: ectoine production and gene expression, In: A. Oren (ed), Microbiology and biogeochemistry of hyper-saline environments, CRC Press, Inc. Boca Raton, Fla., 187–202 (1999).

    Google Scholar 

  35. J. K. Lanyi, Bacteriological Reviewa, 38, 272 (1974).

    CAS  Google Scholar 

  36. R Reistad, Arch. Mikrobiol., 71, 353 (1970).

    Article  CAS  Google Scholar 

  37. A. Ventosa, J. J. Nieto and A. Oren, Microbiol. Mol. Biol. R., 62, 504 (1998).

    CAS  Google Scholar 

  38. S. Fukuchi, K. Yoshimune, M. Wakayama, M. Moriguchi and K. Nishikawa, J. Mol. Biol., 327, 347 (2003).

    Article  CAS  Google Scholar 

  39. K. Y. Yeung and W. L. Ruzzo, Bioinformatics, 17, 763 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berna Sariyar-Akbulut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sariyar-Akbulut, B. Rapid differentiation of new isolates with MALDI-TOF mass spectrometry via discriminant function analysis based on principal components. Korean J. Chem. Eng. 26, 1645–1651 (2009). https://doi.org/10.1007/s11814-009-0243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0243-2

Key words

Navigation