Skip to main content
Log in

Thermal instability of a fluid layer when cooled isothermally from above

  • Process Systems Engineering, Process Safety, Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The onset of buoyancy-driven convection in an initially motionless isothermal fluid layer is analyzed numerically. The infinite horizontal fluid layer is suddenly cooled from above to relatively low temperature. The rigid lower boundary remains at the initial temperature. In the present transient system, when the Rayleigh number Ra exceeds 1101, thermal convection sets in due to buoyancy force. To trace the temporal growth rates of the mean temperature and its fluctuations we solve the Boussinesq equation by using the finite volume method. We suggest that the system begins to be unstable when the growth rate of temperature disturbances becomes equal to that of the conduction field. Three different characteristic times are classified to interpret numerical results clearly: the onset time of intrinsic instability, the detection time of manifest convection and the undershoot time in a plot of the cooling rate versus time. The present scenario is that the thermal instability sets in at the critical time, then grows super-exponentially up to near the undershoot time, and between these two times the first visible motion is detected. Numerical results are compared with available experimental data. It is found that the above scenario looks promising and the critical time increases with decreasing the Prandtl number Pr and also the Rayleigh number Ra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. R. Morton, Q. J. Mech. App. Math., 10, 433 (1957).

    Article  Google Scholar 

  2. C.K. Choi, J.H. Park and M. C. Kim, Heat Mass Trans., 41, 155 (2004).

    CAS  Google Scholar 

  3. C. K. Choi and K. H. Kang, Phys. Fluids, 9, 7 (1997).

    Article  Google Scholar 

  4. T. D. Foster, Phys. Fluids, 8, 1249 (1965).

    Article  Google Scholar 

  5. B. S. Jhaveri and G. M. Homsy, J. Fluid Mech., 114, 251 (1982).

    Article  Google Scholar 

  6. K. K. Tan and R. B. Thorpe, Chem. Eng. Sci., 51, 4127 (1996).

    Article  CAS  Google Scholar 

  7. W.G. Spangenberg and W. R. Rowland, Phys. Fluids, 4, 743 (1961).

    Article  Google Scholar 

  8. T. D. Foster, Phys. Fluids, 8, 1770 (1965).

    Article  CAS  Google Scholar 

  9. R. E. Plevan and J. A. Quinn, AIChE J., 12, 894 (1965).

    Article  Google Scholar 

  10. L. M. Blair and J.A. Quinn, J. Fluid Mech., 36, 385 (1969).

    Article  CAS  Google Scholar 

  11. E.G. Mahler and R. S. Schechter, Chem. Eng. Sci., 25, 955 (1970).

    Article  CAS  Google Scholar 

  12. K. K. Tan and R. B. Thorpe, Chem. Eng. Sci., 47, 3565 (1992).

    Article  CAS  Google Scholar 

  13. T. J. Chung, M. C. Kim and C.K. Choi, Korean J. Chem. Eng., 21, 41 (2004).

    Article  CAS  Google Scholar 

  14. C.K. Choi, J.H. Park, H.K. Park, H. J. Cho, T. J. Chung and M. C. Kim, Int. J. Thermal Sci., 43, 817 (2004).

    Article  Google Scholar 

  15. J.H. Park, T. J. Chung, C.K. Choi and M.C. Kim, AIChE J., 52, 2677 (2006).

    Article  CAS  Google Scholar 

  16. J. H. Park, M. C. Kim, J. H. Moon, S. H. Park and C. K. Choi, IASME Transactions, 2, 1674 (2005).

    Google Scholar 

  17. S.V. Patankar, Numerical heat transfer and fluid flow, Taylor & Francis, New York (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Hyun Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, J.H., Ahn, K.H., Choi, C.K. et al. Thermal instability of a fluid layer when cooled isothermally from above. Korean J. Chem. Eng. 26, 1441–1446 (2009). https://doi.org/10.1007/s11814-009-0230-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0230-7

Key words

Navigation