Skip to main content
Log in

CFD simulation of gas-solid bubbling fluidized bed containing FCC particles

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The hydrodynamics of a bubbling gas-solid fluidized bed of 57.4 μm FCC particles was simulated by using a state-of-the-art two-fluid model integrating the kinetic theory of granular flow for particulate phase stresses. The overestimation of the bed expansion was resolved by using a suitable scale factor in the drag model as suggested by McKeen and Pugsley (T.R. McKeen, T.S. Pugsley, Powder Technol., 129, 139 (2003)). This study showed that the method was appropriate in simulation of a gas-solid fluidized bed of Geldart A particles at high gas velocities (0.3 to 0.61 m/s). The reduction of computational time especially for simulation of large-scale systems was achieved. The time-averaged local voidage was compared with the experimental data and the trend of varying several parameters on the hydrodynamic of the bed was investigated. The simulation results showed both qualitative and quantitative agreement with the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kim and G. Y. Han, Korean J. Chem. Eng., 24, 445 (2007).

    Article  CAS  Google Scholar 

  2. B. Chalermsinsuwan, P. Kuchonthara and P. Piumsomboon, Chem. Eng. Process., 48, 165 (2009).

    CAS  Google Scholar 

  3. W. Zhong, Y. Zhang, B. Jin and M. Zhang, Chem. Eng. Technol., 32(3), 1 (2009).

    Article  CAS  Google Scholar 

  4. V.A. Danilov, J. Lim, I. Moon and K.H. Choi, Korean J. Chem. Eng., 23, 753 (2006).

    Article  CAS  Google Scholar 

  5. Y. Park, C.Y. Yun, J. Yi and H. Kim, Korean J. Chem. Eng., 22, 697 (2005).

    Article  CAS  Google Scholar 

  6. V.V. Ranade, Computational flow modeling for chemical reactor engineering, 1st, ed., Academic Press (2002).

  7. M. Chiesa, V. Mathiesen, J.A. Melheim and B. Halvorsen, Comput. Chem. Eng., 29, 291 (2005).

    Article  CAS  Google Scholar 

  8. M.A. van der Hoef, M. van Sint Annaland and J.A. M. Kuipers, Chem. Eng. Sci., 59, 5157 (2004).

    Article  CAS  Google Scholar 

  9. J. T. Jenkins and S. B. Savage, J. Fluid Mech., 30, 187 (1983).

    Article  Google Scholar 

  10. C.K.K. Lun, S. B. Savage, D. J. Jeffrey and N. Chepurniy, J. Fluid Mech., 140, 223 (1984).

    Article  Google Scholar 

  11. B.G.M. van Wachem, J.C. Schouten, R. Krishna and C. M. van den Bleek, Chem. Eng. Sci., 54, 2141 (1999).

    Article  Google Scholar 

  12. J. Ding and D. Gidaspow, AIChE J., 36, 523 (1990).

    Article  CAS  Google Scholar 

  13. C. C. Pain, S. Mansoorzadeh, C. R. E. de Oliveira and A. J. H. Goddard, Int. J. Multiph. Flow, 36, 91 (2001).

    CAS  Google Scholar 

  14. B.G.M. van Wachem, J. C. Schouter, R. Krishna and C. M. van den Bleek, Comput. Chem. Eng., 22, S299 (1998).

    Article  Google Scholar 

  15. D. J. Patil, M. van Sint Annaland and J.A. M. Kuipers, Chem. Eng. Sci., 60, 73 (2005).

    Article  CAS  Google Scholar 

  16. L. Massimilla and G. Donsi, Powder Technol., 15, 253 (1976).

    Article  Google Scholar 

  17. J. R. Grace and G. Sun, Can. J. Chem. Eng., 69, 1126 (1991).

    Article  CAS  Google Scholar 

  18. G. Ferschneider and P. Mege, Rev. Inst. Fr. Pet., 51(2), 301 (1996).

    CAS  Google Scholar 

  19. J. Bayle, P. Mege and T. Gauthier, In: M. Kwauk, J. Li and W. C. Yang (Eds.), Fluidization X, Engineering Foundation, New York, p. 125 (2001).

  20. T. Patureaux and D. Barthod, Oil Gas Sci. Technol.-Rev. IFP, 55(2), 219 (2000).

    Article  CAS  Google Scholar 

  21. R. Krishna and J. M. van Baten, Chem. Eng. J., 82, 247 (2001).

    Article  CAS  Google Scholar 

  22. H. S. Kim and H. Arastoopour, Can. J. Chem. Eng., 73, 603 (1995).

    Article  Google Scholar 

  23. H. S. Kim and H. Arastoopour, Powder Technol., 122, 83 (2002).

    Article  CAS  Google Scholar 

  24. T.R. McKeen and T. S. Pugsley, Powder Technol., 129, 139 (2003).

    Article  CAS  Google Scholar 

  25. S. Zimmermann and F. Taghipour, Ind. Eng. Chem. Res., 44, 9818 (2005).

    Article  CAS  Google Scholar 

  26. M. Syamlal and T. J. O’Brien, Office of fossil energy, national energy technology laboratory, Morgantown, WV, April (1987).

  27. T. Li, K. Pougatch, M. Salcudean and D. Grecov, Powder Technol., 184, 89 (2008).

    Article  CAS  Google Scholar 

  28. M. Ye, J. Wang, M.A. van der Hoef and J.A. M. Kuipers, Particuology, 6, 540 (2008).

    Article  CAS  Google Scholar 

  29. M. Ye, Ph.D. Thesis, University of Twente, Enschede, Netherlands (2005).

  30. J. Wang, M.A. vander Hoef and J.A.M. Kuipers, Chem. Eng. Sci., 64, 622 (2009).

    Article  CAS  Google Scholar 

  31. L. G. Gibilaro, R. Di Felice and S. P. Waldram, Chem. Eng. Sci., 40(10), 1817 (1985).

    Article  CAS  Google Scholar 

  32. Fluent 6.3, User’s Guide, 23.5 Eulerian Model, Fluent Inc., (2006).

  33. D. J. Patil, M. van Sint Annaland and J.A. M. Kuipers, Chem. Eng. Sci., 60, 57 (2005).

    Article  CAS  Google Scholar 

  34. L. Huilin, H. Yurong, L. Wentie, D. Jianmin, D. Gidaspow and J. Bouillard, Chem. Eng. Sci., 59(4), 865 (2004).

    Article  CAS  Google Scholar 

  35. W. Du, X. J. Bao, J. Xu and W. S. Wei, Chem. Eng. Sci., 61(14), 4558 (2006).

    Article  CAS  Google Scholar 

  36. F. Taghipour, N. Ellis and C. Wong, Chem. Eng. Sci., 60, 6857 (2005).

    Article  CAS  Google Scholar 

  37. B. G.M. van Wachem, J. C. Schouten, C. M. Bleek van den, R. Krishna and L. L. Sinclair, AIChE J., 47, 1035 (2001).

    Article  Google Scholar 

  38. G.N. Ahuja and A.W. Patwardhan, DOI:10.1016/j.cej.2008.03.011.

  39. D. J. Patil, J. Smit, M. van Sint Annaland and J. A. M. Kuipers, AIChE J., 52(1), 58 (2007).

    Article  CAS  Google Scholar 

  40. D. Ma and G. Ahmadi, J. Chem. Phys., 84, 3449 (1986).

    Article  CAS  Google Scholar 

  41. P. Lettieri, G. Micale, L. Cammarata and D. Colman, in Proc. 10th Workshop on Two-Phase Flow Predictions, Merseburg, 300 (2002).

  42. L. Cammarata, P. Lettieri, G.D.M. Micale and D. Colman, Int. J. Chem. Reactor Eng., 1, A3 (2003).

    Article  Google Scholar 

  43. N. Ellis, Ph.D. Thesis, University of British Columbia, Vancouver, British Columbia, Canada (2003).

  44. Z. Yongmin and L. Chunxi, 3rd Asian Particle Technol. Symp., 392 (2007).

  45. C.C. Pain, S. Mansoorzadeh and C. R. E. de Oliveira, Int. J. Multiphase Flow, 27, 527 (2001).

    Article  CAS  Google Scholar 

  46. H. Zhu, J. Zhu, G. Li and F. Li, Powder Technol., 180, 339 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Hossein Hosseini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseini, S.H., Rahimi, R., Zivdar, M. et al. CFD simulation of gas-solid bubbling fluidized bed containing FCC particles. Korean J. Chem. Eng. 26, 1405–1413 (2009). https://doi.org/10.1007/s11814-009-0220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0220-9

Key words

Navigation